58 resultados para Metabolite kinetics
Resumo:
A new and two previously known metabolites possessing a polypropionate carbon skeleton have been isolated from the marine gastropod mollusk Siphonaria lessoni, collected at Chilean coasts. Their structures have been determined by spectroscopical methods.
Resumo:
The analytical method developed to evaluate tamoxifen in dog plasma samples was precise, accurate, robust and linear in the range of 5-200 ng/mL. The limits of detection and quantification were 0.981 ng/mL and 2.97 ng/mL, respectively. Besides, the intra-day precision and accuracy variations were 8.78 and 10.16%, respectively. Tamoxifen concentrations were analyzed by combined reversed phase liquid chromatography and UV detection (lambda=280 nm). The study was conducted using an open randomized 2-period crossover balanced design with a 1-week washout period between the doses. This simple, rapid and selective method is suitable for pharmacokinetic, bioavailability and bioequivalence studies.
Resumo:
Synthetic antioxidants are an alternative to prevent or retard the degradation of biofuels made from vegetable oils. In this study, it was evaluated the oxidative stability of B100 soybean oil biodiesel, in the presence of tercbutylhydroquinone (TBHQ). The results showed that the induction period, that precedes the seeding process, was delayed in the presence of the antioxidant. Moreover, the obtained results suggest that the B100 biodiesel containing TBHQ can present a storage time at 25 ºC, three times longer than the estimated time for the pure B100.
Resumo:
This work describes the synthesis of hydrogels of cellulose acetate (AC) crosslinked with 1,2,4,5-benzenotetracarboxylic dianhydride (PMDA). The crosslinking reaction was monitored by FTIR. Analysis of aromatic fragments from the alkaline hydrolysis of the gels by UV spectroscopy indicated that an increase in the stoichiometric ratio of dianhydride resulted in higher degrees of crosslinking. The non-porous nature of the gels was confirmed by analysis of nitrogen adsorption. Water absorption isotherms showed that as the temperature and degree of crosslinking increased, the percentage of water absorbed at equilibrium (%Seq) also increased. The hydrogels presented second order swelling kinetics.
Resumo:
Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.
Resumo:
The Practical Stochastic Model is a simple and robust method to describe coupled chemical reactions. The connection between this stochastic method and a deterministic method was initially established to understand how the parameters and variables that describe the concentration in both methods were related. It was necessary to define two main concepts to make this connection: the filling of compartments or dilutions and the rate of reaction enhancement. The parameters, variables, and the time of the stochastic methods were scaled with the size of the compartment and were compared with a deterministic method. The deterministic approach was employed as an initial reference to achieve a consistent stochastic result. Finally, an independent robust stochastic method was obtained. This method could be compared with the Stochastic Simulation Algorithm developed by Gillespie, 1977. The Practical Stochastic Model produced absolute values that were essential to describe non-linear chemical reactions with a simple structure, and allowed for a correct description of the chemical kinetics.
Resumo:
The kinetics and mechanism of the reactions between 4(2pyridylazo)-resorcinol and Zn2+, Cu2+ and Zn2++Cu2+ equimolar mixtures were studied. The reactions were performed in aqueous solution (pH = 8.5, borate buffer) and monitored spectrophotometrically at 500 nm using stopped-flow technique. Spectral and kinetic data indicate that the Zn2++Cu2+ equimolar mixture behaves as an unique species and it can be attributed to the interactions of Zn2+ and of Cu2+ with water molecules in the aqueous solution. A mechanism is proposed and the rate constants are calculated.
Resumo:
The pollution and toxicity problems posed by arsenic in the environment have long been established. Hence, the removal and recovery remedies have been sought, bearing in mind the efficiency, cost effectiveness and environmental friendliness of the methods employed. The sorption kinetics and intraparticulate diffusivity of As (III) bioremediation from aqueous solution using modified and unmodified coconut fiber was investigated. The amount adsorbed increased as time increased, reaching equilibrium at about 60 minutes. The kinetic studies showed that the sorption rates could be described by both pseudo-first order and pseudo-second order process with the later showing a better fit with a value of rate constant of 1.16 x 10-4 min-1 for the three adsorbent types. The mechanism of sorption was found to be particle diffusion controlled. The diffusion and boundary layer effects were also investigation. Therefore, the results show that coconut fiber, both modified and unmodified is an efficient sorbent for the removal of As (III) from industrial effluents with particle diffusion as the predominant mechanism.
Resumo:
Nicotine, an oxidizing agent, is certainly one of the most widely used alkaloids in the world. It is, together with its main metabolite, cotinine, responsible for tobacco-dependence. The use of tobacco is closely associated with lung disease, morphological leukocyte modification and generation of oxidant species. The aim of this study was to look for a possible relationship between cotinine, oxidant species generation and oxidative processes. After studying the action of cotinine in some chemical oxidation models and on the enzymatic kinetics of peroxidases (myeloperoxidase and horseradish peroxidase), we concluded that cotinine does not act directly upon H2O2, HOCl, taurine chloramines, horseradish peroxidase or myeloperoxidase.
Resumo:
Electrode kinetics and complex formation of Zn(II) using doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin, chloramphenicol and cephaloglycin were reported at pH = 7.30 ± 0.01 in = 1.0 molL-1 NaClO4 used as supporting electrolyte at 25.0°C. Kinetic parameters viz. transfer coefficient (α), degree of irreversibility (λ) and rate constant (k) were determined. The study showed that 'Transition state' behaves between reactant (O) and product (R) response to applied potential. The stability constants varied from 2.14 to 10.31 showing that these drugs or their complexes could be used against Zn toxicity.
Resumo:
Divalent metal complexes of ligand 2-methoxybenzylidenepyruvate with Fe, Co, Ni, Cu and Zn as well as sodium salt were synthesized and investigated in the solid state. TG curves of these compounds were obtained with masses sample of 1 and 5mg under nitrogen atmosphere. Different heating rates were used to characterize and study these compounds from the kinetic point of view. The activation energy and pre-exponential factor were obtained applying the Wall-Flynn-Ozawa method to the TG curves. The obtained data were evaluated and the values of activation energy (Ea / kJ mol-1) was plotted in function of the conversion degree (α). The results show that due to mass sample, different activation energies were obtained. The results are discussed mainly taking into account the linear dependence between the activation energy and the pre exponential factor, where was verified the effect of kinetic compensation (KCE) and possible linear relations between the dehydrations steps of these compounds.
Resumo:
This study aimed to characterize protein, oil, starch and soluble sugar mobilization as well as the activity of alpha-amylase during rosewood seed germination. Germination test was carried out at 25°C and the following parameters were analyzed: percentage of germination, initial, average, and final germination time. Seed reserve quantification was monitored in quiescent seeds and during different stages of radicle growth. Starch mobilization was studied in function of a-amylase activity. Germination reached 87.5% at the initial, average, and final time of 16, 21 and 30 days, respectively. Oil mobilization showed a negative linear behavior, decreasing 40% between the first and the last stage analyzed, whereas protein levels increased 34.7% during the initial period of germination. Starch content (46.4%) was the highest among those of the metabolites analyzed and starch mobilization occurred inversely to the observed for soluble sugars; alpha-amylase activity increased until the 15th day, a period before radicle emission and corresponding to the highest starch mobilization. The high percentage of rosewood seed germination may be related to the controlled condition used in the germination chamber as well as to high seed reserve mobilization, in special oil and starch.
Resumo:
This study was conducted to evaluate the decomposition kinetics of gaseous ozone in peanut grains. This evaluation was made with 1-kg peanut samples, moisture contents being 7.1 and 10.5% wet basis (w.b.), placed in 3-liter glass containers. The peanut grains were ozonated at the concentration of 450 µg L-1, at 25 and 35 ºC, with gas flow rates of 1.0 and 3.0 L min-1. Time of saturation was determined by quantifying the residual concentration of ozone after the gas passed through the grains to constant mass. The decomposition kinetics of ozone was evaluated after the grain mass was ozone-saturated. For the peanut grains whose moisture content was 7.1% (w.b.), at 25 and 35ºC and with flow rates of 1.0 and 3.0 L min-1, the values obtained for time of saturation of gaseous ozone ranged between 173 and 192 min; the concentration of saturation was approximately 260 µg L-1. For the grains whose moisture content was 10.5% (w.b.), a higher residual concentration of gaseous ozone was obtained at 25 ºC, that of 190 µg L-1. As regards the half-life of ozone, the highest value obtained was equivalent to 7.7 min for grains ozonated at 25 ºC, while for those with moisture content of 10.5% at 35 ºC, half-life was 3.2 min. In the process of ozone decomposition in peanut grains, temperature was concluded to be the key factor. An increase of 10 ºC in the temperature of the grains results in a decrease of at least 43% in the half-life of ozone.
Resumo:
ABSTRACT Roasting is one of the most complex coffee processing steps due to simultaneous transfers of heat and mass. During this process, beans lose mass because of fast physical and chemical changes that will set color and flavor of the commercial coffee beverage. Therefore, we aimed at assessing the kinetics of mass loss in commercially roasted coffee beans according to heating throughout the processing. For that, we used samples of 350-g Arabica coffee processed grains with water content of 0.1217 kga kg-1, in addition to a continuous roaster with firing gas. The roaster had initial temperatures of 285, 325, 345 and 380 °C, decreasing during the process up to 255, 285, 305 and 335 °C respectively. Mass loss was calculated by the difference between grain weight before and after roasting. We observed a linear variation directly dependent on roaster temperature. For each temperature during the process was obtained a constant mass loss rate, which was reported by the Arrhenius model with r2 above 0.98. In a roaster in non-isothermal conditions, the required activation energy to start the mass loss in a commercial coffee roasting index was 52.27 kJ mol -1.
Resumo:
Enterotoxaemia, a common disease that affects domestic small ruminants, is mainly caused by the epsilon toxin of Clostridium perfringens type D. The present study tested four distinct immunization protocols to evaluate humoral response in lambs, a progeny of non-vaccinated sheep during gestation. Twenty-four lambs were randomly allocated into four groups according to age (7, 15, 30 and 45 days), receiving the first dose of epsilon toxoid commercial vaccine against clostridiosis with booster after 30 days post vaccination. Indirect ELISA was performed after the first vaccine dose and booster to evaluate the immune response of the lambs. Results showed that for the four protocols tested all lambs presented serum title considered protective (≥0.2UI/ml epsilon antitoxin antibodies) and also showed that the anticipation of primovaccination of lambs against enterotoxaemia conferred serum title considered protective allowing the optimization of mass vaccination of lambs.