45 resultados para MATERIALS WORKING
Resumo:
In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
The electrochemical study of glass like tungsten oxide derivatives requires the construction of special electrodes due to the fact that these glasses are not conductive. Electrodes modified with WO3 change their color when submitted to some potential perturbation. The color change of the electrochromic materials was observed in situ by coupling an electrochemical cell to a stereomicroscope. The constructed cell is versatile and may represent a great contribution to the electrochemical studies of materials, especially in the systems where it is interest to observe the working electrode surface during the electrochemical experiment.
Resumo:
Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.
Resumo:
The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country.
Resumo:
Because of their practical applications, porous materials attract the attention of undergraduate students in a way that can be used to teach techniques and concepts in various chemistry disciplines. Porous materials are studied in various chemistry disciplines, including inorganic, organic, and physical chemistry. In this work, the syntheses of a microporous material and a mesoporous material are presented. The porosity of the synthesized materials is characterized by X-ray diffraction analysis. We show that this technique can be used to determine the pore dimensions of the synthesized materials.
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
Farmers have difficult of determining the evenness of transverse distribution and the working width, due the tests with this aim require equipments and complex methodologies. So, this study evaluates some alternative containers with the aim to allow a more accessible adjustment of the full width of the solid fertilizer spreaders. Four different containers were tested: i) standard container constructed in accordance with ISO 5690/1; ii) container of polyethylene (plastic trays) with screen shading to prevent the ricochet of material; iii) containers composed by boxes of long-life milk, and iv) containers composed by flowerpots (number 3.5). Also, three different spreaders were used for the tests. Alternative containers showed greater retention of particles than the standardized containers. The full width of work obtained for the coefficients of variation of 12.5; 15; 17.5 and 20%, ranged due the containers in the different pathways. The flowerpots of polyethylene showed similar results to the standardized containers. The heights of the containers were more important for its efficiency than its area of collection.
Resumo:
In Tropical regions, the animal performance is often affected by climate conditions. This study aimed to evaluate covering materials in individual shelters, normally used to house dairy calves, and its influence on the calves physiology and performance. The design used was completely randomized, with a 2x3 factorial arrangement to compare the averages of 5% through the Tukey's test, i.e., both genders- and three types of covering in the shelters (Z - zinc; AC - asbestos cement; and WPAC - white-painted asbestos cement). Parameters evaluated included daily weight gain (DWG), dry matter intake (DMI), feed conversion (FC), rectal temperature (RT), and respiratory frequency (RF). Results showed significant differences (P < 0.05) among males (1.04kg/day) and females (0.74kg/day) for DWG and interaction between gender and treatment (P < 0.05) for zinc covering (0.562kg/day for females and 1.120kg/day for males). Significant differences were also observed in FI of animals housed under shelters with the covering of zinc (48.35kgDM/day for females and 96.91 kgDM/day for males). There were no significant differences (P > 0.05) in the FC and the RT, and there were significant differences (P < 0.05) for RF in the Z treatments (56.9 mov.min-1), WPAC (62.2 mov.min-1) and FC (70.25 mov.min-1). It was concluded that different covering materials did not affect performance and dry matter intake of dairy calves. However, the animals' physiology of thermoregulation was altered by the different covering materials used in individual shelters.
Resumo:
The research was developed to evaluate the use of different types of roofing materials regularly used in poultry houses. Measurements of thermal comfort were made through the use of techniques such as the Black Globe and Humidity Index (BGHI), the Thermal Heat Load (THL) and Enthalpy (H). Conducted in the State University of Goiás, during the months of April and May, 2011, the experiment was composed of five different treatments: AC - Asbestos cement tiles, BA -Bamboo tiles, BAP - Bamboo tiles painted in white, FB -Vegetable fiber tiles and bitumen, FBP -Vegetable fiber tiles and bitumen painted in white. The experiment consisted in 15 repetitions, which were considered the different days of measurements taken. Throughout the studied period, the time of the day considered the least comfortable was the one observed at 2:00pm, and the coverage of vegetable fiber and bitumen showed the highest value of BGHI (84.1) when compared to other types of coverage, characterizing a situation of lower thermal comfort, and no difference was found for THL and H on treatments in the studied region.
Resumo:
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.
Resumo:
The present study was conducted at the Department of Rural Engineering and the Department of Animal Morphology and Physiology of FCAV/Unesp, Jaboticabal, SP, Brazil. The objective was to verify the influence of roof slope, exposure and roofing material on the internal temperature of reduced models of animal production facilities. For the development of the research, 48 reduced and dissemble models with dimensions 1.00 × 1.00 × 0.50 m were used. The roof was shed-type, and the models faced to the North or South directions, with 24 models for each side of exposure. Ceramic, galvanized-steel and fibro tiles were used to build the roofs. Slopes varied between 20, 30, 40 and 50% for the ceramic tile and 10, 30, 40 and 50% for the other two. Inside the models, temperature readings were performed at every hour, for 12 months. The results were evaluated in a general linear model in a nested 3 × 4 × 2 factorial arrangement, in which the effects of roofing material and exposure were nested on the factor Slope. Means were compared by the Tukey test at 5% of probability. After analyzing the data, we observed that with the increase in the slope and exposure to the South, there was a drop in the internal temperature within the model at the geographic coordinates of Jaboticabal city (SP/Brazil).
Resumo:
ABSTRACTThe current study aimed to evaluate the influence of three colors and two types of roofing materials under the internal temperature of bee colonies Apis mellifera. The experiment was conducted at the Agricultural Sciences Campus at the Federal University of Sao Francisco Valley located in Petrolina-PE, in November and December 2013, using 24 colonies housed in Langstroth hives. The experiment was a completely randomized factorial design (3x2) with three colors of box (blue, white, and traditional) and two types of cover (with and without the use of plaster) with six treatments and four replications. The internal temperature dates of the colonies were hourly recorded, during 24 hours, and surface temperatures were hourly recorded between 08h00 and 17h00. The highest values for surface and internal temperature were registered in the blue painted boxes without the use of plasterboard, and the blue painted boxes covered with plasterboard respectively. However, the lowest values were found in the white painted hives and hives that have not received the plasterboard. It is recommended to paint boxes with bright colors, and the use of plasterboard had no effect in reducing the internal temperature.
Resumo:
The authors describe a surgical technique which allows, without increasing costs, to perform laparoscopic cholecystectomy with a single incision, without using specific materials and with better surgical ergonomics. The technique consists of a longitudinal umbilical incision, navel detachment, use of a permanent 10mm trocar and two clamps directly and bilaterally through the aponeurosis without the use of 5mm trocars, transcutaneous gallbladder repair with straight needle cotton suture, ligation with unabsorbable suture and umbilical incision for the specimen extraction. The presented technique enables the procedure with conventional and permanent materials, improving surgical ergonomics, with safety and aesthetic advantages.
Resumo:
The flow of Bingham liquids through porous media has been studied. Experiments have been performed to determine the flow rate / pressure drop relationship for the flow of a grease of Binghamian rheological behavior through an array of rods of circular cross section. The yield stress and plastic viscosity of the grease have been determined with the aid of a controlled stress rotational rheometer. To investigate a wider range of the flow parameters, the mass and momentum conservation equations have been solved numerically, in conjunction with the generalized Newtonian constitutive law and the bi-viscosity model. The finite volume method has been employed to obtain the numerical solution. These numerical results also yielded a flow rate / pressure drop relationship, which is in very good agreement with the experimental results. A capillaric theory has been developed to determine an analytical relationship between the flow rate and pressure drop for flows of Bingham liquids through porous media. It is shown that the predictions of this theory are in good agreement with the experimental and numerical results.