38 resultados para Low temperatures
Resumo:
Research with soybean seeds has revealed that the results of the electrical conductivity test may be influenced by storage temperature, particularly low temperature, such as 10ºC, suggesting that seed deterioration at low storage temperatures does not seem to be directly related to the loss of the cell membrane integrity. This study was conducted with seeds of two soybean cultivars with the objective of: a) studying the effect of different storage temperatures (10ºC; 20ºC; 25ºC; 20/10ºC and 25/10ºC) on the results of the electrical conductivity test; b) observing the behavior of fatty acids and carbohydrates during storage and studying its relation with the electrical conductivity results. Every three months, from a total of 18 months of storage, the physiological quality of seeds was evaluated using the germination, accelerated aging and electrical conductivity tests. Based on the obtained results, it can be concluded that the electrical conductivity test was not shown to be a good indicative of the deterioration process of seeds stored at low temperatures, and no direct relationship between changes in the fatty acids and carbohydrates and the behavior of the mentioned test for seeds stored at 10ºC was found.
Storage of 'Swingle' citrumelo seeds in different maturation stages subjected to fungicide treatment
Resumo:
The establishment of citrus orchards with rootstocks from seed with a low physiological quality has been a recurring problem. Low quality seeds directly affect both the final stand and the time required for seedling production. The irregular maturation of fruits, seed recalcitrance, and the high incidence of fungi, make long term storage difficult, even at low temperatures. This study evaluated the storage potential and the use of fungicide treatments on 'Swingle' citrumelo seeds extracted from fruits collected at two maturation stages, green or ripe. The seeds were subjected to a thermal treatment, treated with Derosal, Thiram or Tecto+Captan fungicides, packaged in impermeable polyethylene bags and stored in a cold chamber for nine months. Every three months, the physiological and sanitary qualities of the seeds were evaluated from germination and sanitary tests and also from enzyme profiles. Seeds from green fruits deteriorated less than those from mature fruits; deterioration increased up to nine months of storage; treatment with the Tecto+Captan mixture gave effective pathogen control and maintained seed quality during storage. The germination of the green and ripe seeds is satisfactory (70%) after three months storage.
Resumo:
The objective of this work was to evaluate photoprotective mechanisms related to low positive temperatures in Coffea canephora (Conilon clones 02 and 153) and C. arabica ('Catucaí' IPR 102) genotypes, involved in cold temperature tolerance. To accomplish this, one-year-old plants were successively submitted to: temperature decrease of 0.5ºC day-1, from 25/20ºC to 13/8ºC; a three-day chilling cycle at 13/4ºC; and a recovery period of 14 days (25/20ºC). During the experiment, leaf gas exchange, chlorophyll a fluorescence and leaf photosynthetic pigment content were evaluated. Total activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and ribulose-5-phosphate kinase (Ru5PK) were quantified to measure the activity of photosynthesis key enzymes. All genotypes showed low temperature sensitivity, but displayed diverse cold impact and recovery capabilities regarding the photosynthetic-related parameters studied. Catucaí IPR 102 cultivar showed better ability to cope with cold stress than the Conilon clones, especially Conilon 02, and had full recovery of leaf gas exchange, fluorescence parameters, enzymatic activity, and higher contents of the photoprotective pigments zeaxanthin and lutein.
'Royal Gala' apple quality stored under ultralow oxygen concentration and low temperature conditions
Resumo:
The objective of this work was to evaluate the interaction of ultralow oxygen concentrations (ULO) with storage temperatures and carbon dioxide partial pressures and its influence on fruit quality preservation and on the occurrence of physiological disorders in 'Royal Gala' apples. The experiment was carried out in a completely randomized design, with four replicates 25-fruit. ULO conditions (1.0 kPa O2 + 2.0 kPa CO2; 0.8 kPa O2 + 1.5 kPa CO2; 0.8 kPa O2 + 1.0 kPa CO2; 0.6 kPa O2 + 1.5 kPa CO2; and 0.6 kPa O2 + 1.0 kPa CO2) were tested at 0, 0.5 and 1.0°C, in a 5x3 factorial arrangement. Fruit quality and ripening analyses were performed after eight-month storage plus seven days of shelf-life at 20°C. Oxygen partial pressures below 0.8 kPa increased the occurrence of internal breakdown and mealiness. The best ULO condition was 1.0 kPa O2 + plus 2.0 kPa CO2 at 1.0°C. The interaction of ULO conditions and storage temperatures shows the need of increasing O2 partial pressure at higher storage temperatures.
Resumo:
Temperature is the main climate factor related to induction, maintenance and dormancy release in apple (Malus domestica Borkh.). The inadequate chilling exposure in apples causes budbreak problems, resulting in decrease in yield potential. Thus, the knowledge of physiological principles and environmental factors determining the dormancy phenomenon, especially winter temperature effects, it is necessary for the efficient selection of cultivars in a productive region. In addition, it is indispensable to adapt the orchard management aiming to decrease the problems caused by lack chilling during winter. The objective of this study was to evaluate the influence of different thermal conditions during the dormancy period on budbreak of apple cultivars. One-year-old twigs of 'Castel Gala' and 'Royal Gala' cultivars, grafted on M7 rootstock, were submitted to temperatures of 5, 10 and 15ºC for different exposure periods (168; 336; 672; 1,008 and 1,344 hours). After treatments execution, the plants were kept in a greenhouse at 25ºC. Budbreak was quantified when accumulated 3,444; 6,888; 10,332; 13,776; 17,220 and 20,664 GDHºC after temperature treatments. The cultivars responded differently to temperature effect during the winter period. The temperature of 15ºC during winter shows a greater effectiveness on 'Castel Gala' apple budbreak while in the 'Royal Gala' apples the temperatures of 5 and 10ºC show better performance. 'Castel Gala' cultivar (low chilling requirement) may supply its physiological necessities, may be capable to budburst, even when subjected to higher temperatures in relation to 'Royal Gala' apples (high chilling requirement).
Resumo:
Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.
Resumo:
ABSTRACT Calotropis procera, Apocynaceae, is a wild perennial shrub that originated in the Persian deserts. It is known to provide key resources in degraded ecosystems to about 80 animal species. C. procera is regenerated by seed and produces lots of small seeds that are dispersed by wind; nonetheless, its density is very low. The purpose of this study is to estimate the cardinal temperatures including the base, optimum, and maximum temperatures of Calotropis procera looking at two different ecotypes in the Iranian desert. The germination behavior of C. procera seeds was tested at temperature regimens of 0, 5, 10, 15, 20, 25, 30, 35 and 40oC and was analyzed using linear regression models. The rate of germination increased between base and optimum thermal conditions, and decreased between optimum and maximum thermal conditions. The base, optimum and maximum temperatures for germination of C. procera seeds were estimated at 19.10, 30.75 and 47.80 oC for the Fars and 20.00, 31.82 and 49.69oC for the Zahedan desert, respectively. Temperature and germination were rated to determine the seeding dates of the C. procera. Overall, cardinal temperatures for germination were dependent on local climate characteristics for the range of adaptations in plant growth of the given species.
Resumo:
The purpose of this study was to follow-up color changes in low-calorie strawberry and guava jellies during storage. To this end, one formulation of each flavor was prepared varying the application of hydrocolloids (pectin and modified starch). The jellies were studied regarding pH, soluble solids, water activity and syneresis. In order to follow-up color changes, the samples remained stored for 180 days in chambers with controlled temperatures of 10 °C (control) and 25 °C (commercial), and color instrumental analyses (L*, a*, and b*) were performed every 30 days. Arrhenius model was applied to reaction speeds (k) at different temperatures, where light strawberry and guava jellies showed greater color changes when stored at 25 °C compared to the samples stored at 10 °C. Activation energy values between 13 and 15 kcal.mol-1 and Q10 values between 2.1 and 2.3 were obtained for light strawberry jelly and light guava jelly, respectively. Therefore, it was concluded that, with respect to color changes, every 10 °C temperature increase reduces light jellies shelf-life by half.