32 resultados para Lizards - Body temperature
Resumo:
The time course of heart rate and body weight alterations during the natural period of dormancy were determined in active feeding and dormant juvenile specimens of Megalobulimus sanctipauli. In both groups, heart rate markedly decreased during the first 40 days of dormancy, tending to stabilize thereafter. This time period coincided with the decrease in environmental temperature during autumn-winter. At the end of the dormancy period, surviving active feeding and dormant snails showed a significant decrease in heart rate which, however, was significantly greater in the latter group. Total body weight decreased concomitantly with heart rate in dormant snails but remained constant in active feeding snails. Body hydration induced significant increases in weight and heart rate in surviving dormant snails. Feeding following hydration promoted a new significant increase in heart rate but not in weight. These results indicate that the decrease in heart rate observed in juvenile specimens of M. sanctipauli during dormancy may be due to at least three factors: 1) decrease in environmental temperature during autumn-winter, 2) starvation which leads to the depletion of endogenous fuel reserves and to a probable decrease in hemolymph nutrient levels, and 3) dehydration which leads to a probable decrease in hemolymph volume and venous return and/or to an increase in hemolymph osmolarity.
Resumo:
There is evidence that brain temperature (Tbrain) provides a more sensitive index than other core body temperatures in determining physical performance. However, no study has addressed whether the association between performance and increases in Tbrain in a temperate environment is dependent upon exercise intensity, and this was the primary aim of the present study. Adult male Wistar rats were subjected to constant exercise at three different speeds (18, 21, and 24 m/min) until the onset of volitional fatigue. Tbrain was continuously measured by a thermistor inserted through a brain guide cannula. Exercise induced a speed-dependent increase in Tbrain, with the fastest speed associated with a higher rate of Tbrain increase. Rats subjected to constant exercise had similar Tbrain values at the time of fatigue, although a pronounced individual variability was observed (38.7-41.7°C). There were negative correlations between the rate of Tbrain increase and performance for all speeds that were studied. These results indicate that performance during constant exercise is negatively associated with the increase in Tbrain, particularly with its rate of increase. We then investigated how an incremental-speed protocol affected the association between the increase in Tbrain and performance. At volitional fatigue, Tbrain was lower during incremental exercise compared with the Tbrain resulting from constant exercise (39.3±0.3 vs 40.3±0.1°C; P<0.05), and no association between the rate of Tbrain increase and performance was observed. These findings suggest that the influence of Tbrain on performance under temperate conditions is dependent on exercise protocol.