39 resultados para Linear program model
Resumo:
In this article a two-dimensional transient boundary element formulation based on the mass matrix approach is discussed. The implicit formulation of the method to deal with elastoplastic analysis is considered, as well as the way to deal with viscous damping effects. The time integration processes are based on the Newmark rhoand Houbolt methods, while the domain integrals for mass, elastoplastic and damping effects are carried out by the well known cell approximation technique. The boundary element algebraic relations are also coupled with finite element frame relations to solve stiffened domains. Some examples to illustrate the accuracy and efficiency of the proposed formulation are also presented.
Resumo:
The present paper describes an integrated micro/macro mechanical study of the elastic-viscoplastic behavior of unidirectional metal matrix composites (MMC). The micromechanical analysis of the elastic moduli is based on the Composites Cylinder Assemblage model (CCA) with comparisons also draw with a Representative Unit Cell (RUC) technique. These "homogenization" techniques are later incorporated into the Vanishing Fiber Diameter (VFD) model and a new formulation is proposed. The concept of a smeared element procedure is employed in conjunction with two different versions of the Bodner and Partom elastic-viscoplastic constitutive model for the associated macroscopic analysis. The formulations developed are also compared against experimental and analytical results available in the literature.
Resumo:
Increased heart rate variability (HRV) and high-frequency content of the terminal region of the ventricular activation of signal-averaged ECG (SAECG) have been reported in athletes. The present study investigates HRV and SAECG parameters as predictors of maximal aerobic power (VO2max) in athletes. HRV, SAECG and VO2max were determined in 18 high-performance long-distance (25 ± 6 years; 17 males) runners 24 h after a training session. Clinical visits, ECG and VO2max determination were scheduled for all athletes during thew training period. A group of 18 untrained healthy volunteers matched for age, gender, and body surface area was included as controls. SAECG was acquired in the resting supine position for 15 min and processed to extract average RR interval (Mean-RR) and root mean squared standard deviation (RMSSD) of the difference of two consecutive normal RR intervals. SAECG variables analyzed in the vector magnitude with 40-250 Hz band-pass bi-directional filtering were: total and 40-µV terminal (LAS40) duration of ventricular activation, RMS voltage of total (RMST) and of the 40-ms terminal region of ventricular activation. Linear and multivariate stepwise logistic regressions oriented by inter-group comparisons were adjusted in significant variables in order to predict VO2max, with a P < 0.05 considered to be significant. VO2max correlated significantly (P < 0.05) with RMST (r = 0.77), Mean-RR (r = 0.62), RMSSD (r = 0.47), and LAS40 (r = -0.39). RMST was the independent predictor of VO2max. In athletes, HRV and high-frequency components of the SAECG correlate with VO2max and the high-frequency content of SAECG is an independent predictor of VO2max.
Resumo:
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.
Resumo:
OBJECTIVE To analyze the coverage of a cervical cancer screening program in a city with a high incidence of the disease in addition to the factors associated with non-adherence to the current preventive program.METHODS A cross-sectional study based on household surveys was conducted. The sample was composed of women between 25 and 59 years of age of the city of Boa Vista, RR, Northern Brazil who were covered by the cervical cancer screening program. The cluster sampling method was used. The dependent variable was participation in a women’s health program, defined as undergoing at least one Pap smear in the 36 months prior to the interview; the explanatory variables were extracted from individual data. A generalized linear model was used.RESULTS 603 women were analyzed, with an mean age of 38.2 years (SD = 10.2). Five hundred and seventeen women underwent the screening test, and the prevalence of adherence in the last three years was up to 85.7% (95%CI 82.5;88.5). A high per capita household income and recent medical consultation were associated with the lower rate of not being tested in multivariate analysis. Disease ignorance, causes, and prevention methods were correlated with chances of non-adherence to the screening system; 20.0% of the women were reported to have undergone opportunistic and non-routine screening.CONCLUSIONS The informed level of coverage is high, exceeding the level recommended for the control of cervical cancer. The preventive program appears to be opportunistic in nature, particularly for the most vulnerable women (with low income and little information on the disease). Studies on the diagnostic quality of cervicovaginal cytology and therapeutic schedules for positive cases are necessary for understanding the barriers to the control of cervical cancer.
Resumo:
ABSTRACT OBJECTIVE To analyze oral health work changes in primary health care after Brazil’s National Oral Health Policy Guidelines were released. METHODS A literature review was conducted on Medline, LILACS, Embase, SciELO, Biblioteca Virtual em Saúde, and The Cochrane Library databases, from 2000 to 2013, on elements to analyze work changes. The descriptors used included: primary health care, family health care, work, health care policy, oral health care services, dentistry, oral health, and Brazil. Thirty-two studies were selected and analyzed, with a predominance of qualitative studies from the Northeast region with workers, especially dentists, focusing on completeness and quality of care. RESULTS Observed advances focused on educational and permanent education actions; on welcoming, bonding, and accountability. The main challenges were related to completeness; extension and improvement of care; integrated teamwork; working conditions; planning, monitoring, and evaluation of actions; stimulating people’s participation and social control; and intersectorial actions. CONCLUSIONS Despite the new regulatory environment, there are very few changes in oral health work. Professionals tend to reproduce the dominant biomedical model. Continuing efforts will be required in work management, training, and permanent education fields. Among the possibilities are the increased engagement of managers and professionals in a process to understand work dynamics and training in the perspective of building significant changes for local realities.
Resumo:
This paper discusses models, associations and causation in psychiatry. The different types of association (linear, positive, negative, exponential, partial, U shaped relationship, hidden and spurious) between variables involved in mental disorders are presented as well as the use of multiple regression analysis to disentangle interrelatedness amongst multiple variables. A useful model should have internal consistency, external validity and predictive power; be dynamic in order to accommodate new sound knowledge; and should fit facts rather than they other way around. It is argued that whilst models are theoretical constructs they also convey a style of reasoning and can change clinical practice. Cause and effect are complex phenomena in that the same cause can yield different effects. Conversely, the same effect can have a different range of causes. In mental disorders and human behaviour there is always a chain of events initiated by the indirect and remote cause; followed by intermediate causes; and finally the direct and more immediate cause. Causes of mental disorders are grouped as those: (i) which are necessary and sufficient; (ii) which are necessary but not sufficient; and (iii) which are neither necessary nor sufficient, but when present increase the risk for mental disorders.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.