35 resultados para Lemon House.
Resumo:
House dust mite antigens have been used for decades to diagnose allergic diseases in humans and animals. The objective of this study was to identify allergens in commercial Dermatophagoides farinae and Blomia tropicalis extracts by immunoblotting using sera from allergic dogs and anti-dog IgE conjugate. The analysis of antigens present in the D. farinae extract (FDA Allergenic) using sera from 10 dogs allergic to D. farinae showed that eight sera recognized a band of approximately 102 kDa, eight recognized two bands of 52 to 76 kDa, five recognized one band of approximately 76 kDa, four recognized one band of 31 to 38 kDa, and two recognized one band of 12 to 17 kDa. Immunoblot assays of the B. tropicalis extract (FDA Allergenic) using sera from 10 animals allergic to B. tropicalis showed that five sera recognized two bands of 52 to 76 kDa. These results demonstrate the importance of the two house dust mite species for the pathogenesis of canine atopic dermatitis in Brazil. In addition, the results indicate which allergens should be present in allergenic extracts used for diagnosis and allergen-specific immunotherapy.
Resumo:
Our objective was to clone, express and characterize adult Dermatophagoides farinae group 1 (Der f 1) allergens to further produce recombinant allergens for future clinical applications in order to eliminate side reactions from crude extracts of mites. Based on GenBank data, we designed primers and amplified the cDNA fragment coding for Der f 1 by nested-PCR. After purification and recovery, the cDNA fragment was cloned into the pMD19-T vector. The fragment was then sequenced, subcloned into the plasmid pET28a(+), expressed in Escherichia coli BL21 and identified by Western blotting. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Sequence analysis showed the presence of an open reading frame containing 966 bp that encodes a protein of 321 amino acids. Interestingly, homology analysis showed that the Der p 1 shared more than 87% identity in amino acid sequence with Eur m 1 but only 80% with Der f 1. Furthermore, phylogenetic analyses suggested that D. pteronyssinus was evolutionarily closer to Euroglyphus maynei than to D. farinae, even though D. pteronyssinus and D. farinae belong to the same Dermatophagoides genus. A total of three cysteine peptidase active sites were found in the predicted amino acid sequence, including 127-138 (QGGCGSCWAFSG), 267-277 (NYHAVNIVGYG) and 284-303 (YWIVRNSWDTTWGDSGYGYF). Moreover, secondary structure analysis revealed that Der f 1 contained an a helix (33.96%), an extended strand (17.13%), a ß turn (5.61%), and a random coil (43.30%). A simple three-dimensional model of this protein was constructed using a Swiss-model server. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Alignment and phylogenetic analysis suggests that D. pteronyssinus is evolutionarily more similar to E. maynei than to D. farinae.
Resumo:
In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.
Resumo:
A method for determination of organohalogen pesticides in strawberry by gas chromatography with electron capture detection was validated and applied in a monitoring program. Linearity, matrix effects, and day effect were evaluated for the analytes alpha-endosulfan, beta-endosulfan, endosulfan sulphate, lambda-cyhalothrin, procymidone, and trifluralin. The linear range varied according to the chromatographic response of the analyte. Significant matrix effects were observed. The mean recoveries ranged from 74.6 to 115.4%, with repeatability standard deviations between 1.6 and 21.0% and intermediate precision between 5.9 and 21.0%. Detection, quantification and decision limit, and detection capacity ranged from 0.003 to 0.007 mg/kg, 0.005 to 0.013 mg/kg; 0.003 to 3.128 mg/kg; and 0.005 to 3.266 mg/kg, respectively. The method was fit for the purpose of monitoring organohalogen residues in strawberries. Residues of these pesticides were detected in 124 of the 186 samples analyzed between 2009 and 2011 in the state of Minas Gerais. Nine of them did not comply with the current legislation requirements; among them, seven (3.8%) had residues of unauthorized pesticide for the culture of strawberry, one (0.5%) had residues above the maximum residue limit, and another one (0.5%) exhibited both non-conformities.
Resumo:
Orange fiber was used as a novel fat replacer in light lemon ice cream. Nine ice cream formulations were compared: standard control ice cream (IC); ice cream with fiber (F1) from the peel, bagasse, and orange seed (ICA and ICB); ice cream with fiber (F2) from the orange peel alone (ICC and ICD); ice cream with fiber (F3) from the peel, bagasse, and orange seed pretreated with hydro-distillation (ICE and ICF); and ice cream with fiber (F4) from the orange peel pretreated with hydro-distillation (ICG and ICH).The orange fiber reduced the ice cream fat content (50 %) and the overrun ratio and increased the fiber content and the hardness, gumminess, and springiness values, but it did not affect the adhesiveness and odor of the samples. The samples with 1.0 % of orange fiber showed low melting rate values than those of the control ice cream. The overall acceptance of the ice cream with 1.0 % of pre-treated orange peel fiber did not differ from that of the control ice cream (80 %). The orange fiber proved a promising food ingredient since it can be used to decrease the fat content and increase bioactive compounds content, such as fiber and carotenoids.