44 resultados para Langmuir models
Resumo:
Species' geographic ranges are usually considered as basic units in macroecology and biogeography, yet it is still difficult to measure them accurately for many reasons. About 20 years ago, researchers started using local data on species' occurrences to estimate broad scale ranges, thereby establishing the niche modeling approach. However, there are still many problems in model evaluation and application, and one of the solutions is to find a consensus solution among models derived from different mathematical and statistical models for niche modeling, climatic projections and variable combination, all of which are sources of uncertainty during niche modeling. In this paper, we discuss this approach of ensemble forecasting and propose that it can be divided into three phases with increasing levels of complexity. Phase I is the simple combination of maps to achieve a consensual and hopefully conservative solution. In Phase II, differences among the maps used are described by multivariate analyses, and Phase III consists of the quantitative evaluation of the relative magnitude of uncertainties from different sources and their mapping. To illustrate these developments, we analyzed the occurrence data of the tiger moth, Utetheisa ornatrix (Lepidoptera, Arctiidae), a Neotropical moth species, and modeled its geographic range in current and future climates.
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.
Resumo:
The aim of this study was to calibrate the CENTURY, APSIM and NDICEA simulation models for estimating decomposition and N mineralization rates of plant organic materials (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum, Stylosanthes guyanensis) for 360 days in the Atlantic rainforest bioma of Brazil. The models´ default settings overestimated the decomposition and N-mineralization of plant residues, underlining the fact that the models must be calibrated for use under tropical conditions. For example, the APSIM model simulated the decomposition of the Stizolobium aterrimum and Calopogonium mucunoides residues with an error rate of 37.62 and 48.23 %, respectively, by comparison with the observed data, and was the least accurate model in the absence of calibration. At the default settings, the NDICEA model produced an error rate of 10.46 and 14.46 % and the CENTURY model, 21.42 and 31.84 %, respectively, for Stizolobium aterrimum and Calopogonium mucunoides residue decomposition. After calibration, the models showed a high level of accuracy in estimating decomposition and N- mineralization, with an error rate of less than 20 %. The calibrated NDICEA model showed the highest level of accuracy, followed by the APSIM and CENTURY. All models performed poorly in the first few months of decomposition and N-mineralization, indicating the need of an additional parameter for initial microorganism growth on the residues that would take the effect of leaching due to rainfall into account.
Resumo:
Successive applications of pig litter to the soil surface can increase the phosphorus (P) content and alter its adsorption, promoting P transfer to surface or subsurface waters. The purpose of this study was to evaluate P accumulation and the pollution potential of a soil after application of pig litter. In March 2010, eight years after the installation of an experiment in Braço do Norte, Santa Catarina, SC, Brazil, on a Typic Hapludult, soil was sampled (layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20 and 20-30 cm) after the following fertilization treatments: no pig litter fertilization, pig slurry application and pig manure application. In this period, 694 and 1,890 kg P2O5 ha-1 were applied in the treatments with pig slurry and pig manure, respectively. The P content was determined, based on Mehlich-1, anion exchange resin (AER), 0.01 mol L-1 CaCl2 and total P in the samples. The adsorption isotherm parameters were also determined by the Langmuir and Koski-Vähälä & Hartikainem models in the layers 0-2.5 and 20-30 cm. The application of 1,890 kg P2O5 ha-1 in the form of pig manure led to P accumulation, as evidenced by Mehlich-1, down to a depth of 15 cm, by AER and 0.01 mol L-1 CaCl2 down to 20 cm and by total P to 30 cm. After application of 1,890 kg P2O5 ha-1 in the form of pig manure, the values of maximum P adsorption capacity were lowest in the deepest layer (20-30 cm), indicating the occupation of part of the adsorption sites of the particles. The application of swine manure to the soil over eight years increased the P quantity in the soil solution of the surface layer, indicating environmental contamination risk for surface and subsurface waters.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
A capacidade máxima de adsorção de fósforo (CMAP) é um parâmetro bastante útil para caracterizar a capacidade de adsorção de fósforo (P) do solo e, por isso, o modelo de Langmuir, que possibilita essa estimativa, é bastante difundido. Porém, se o ajuste da equação for realizado por modelos não lineares ou linearizados, ou se forem escolhidos modelos de região única ou múltiplas, nem sempre os valores estimados da CMAP e da constante de energia de ligação (k) são semelhantes. O objetivo deste trabalho foi avaliar o efeito do uso de diferentes métodos de ajuste do modelo de Langmuir sobre os valores estimados de CMAP e k. Para isso, utilizouse um único solo de alta capacidade de adsorção de P, o qual foi misturado a quantidades crescentes de areia lavada, construindo-se sistemas com capacidades de sorção crescentes, mas com a fase sólida constituída da mesma mineralogia. Foi utilizado solo do horizonte B de um Latossolo Bruno com 800 g kg-1 de argila, o qual foi misturado com areia em quantidades para obterem-se solos artificiais com 0, 200, 400, 600 e 800 g kg-1 de argila. Esses solos artificiais foram incubados por 30 dias com calcário para elevar o pH(H2O) até 6,0 e, após, foram secos em estufa e peneirados. Foram realizadas as isotermas de adsorção e os dados ajustados pelo modelo de Langmuir, usando os seguintes métodos: NLin - não linear com região única; L-1R - linearização com região única; L-2RG - linearização com duas regiões, ajuste gráfico; L-3RG - linearização com três regiões, ajuste gráfico; L-2RE linerização com duas regiões, ajuste estatístico. Os resultados evidenciaram que todos os métodos utilizados estimaram valores de CMAP proporcionais ao teor de argila dos solos e poderiam ser usados para caracterizar os solos. Contudo, quando utilizados ajustes com mais de uma região de adsorção, os valores da CMAP para a última região foram sensivelmente superiores àqueles observados após a incubação do solo com doses de P em um teste adicional. Isso indica que a CMAP da última região deve ser evitada como caracterizadora da capacidade de adsorção do solo. Conforme era esperado, os valores de k foram proporcionais aos teores de argila do solo na primeira (ou única) região dos modelos linearizados; contudo, não seguiram essa tendência no modelo não linear, recomendando-se cautela na interpretação da constante k ajustada por modelos não lineares.
Liming in Agricultural Production Models with and Without the Adoption of Crop-Livestock Integration
Resumo:
ABSTRACT Perennial forage crops used in crop-livestock integration (CLI) are able to accumulate large amounts of straw on the soil surface in no-tillage system (NTS). In addition, they can potentially produce large amounts of soluble organic compounds that help improving the efficiency of liming in the subsurface, which favors root growth, thus reducing the risks of loss in yield during dry spells and the harmful effects of “overliming”. The aim of this study was to test the effects of liming on two models of agricultural production, with and without crop-livestock integration, for 2 years. Thus, an experiment was conducted in a Latossolo Vermelho (Oxisol) with a very clayey texture located in an agricultural area under the NTS in Bandeirantes, PR, Brazil. Liming was performed to increase base saturation (V) to 65, 75, and 90 % while one plot per block was maintained without the application of lime (control). A randomized block experimental design was adopted arranged in split-plots and four plots/block, with four replications. The soil properties evaluated were: pH in CaCl2, soil organic matter (SOM), Ca, Mg, K, Al, and P. The effects of liming were observed to a greater depth and for a long period through mobilization of ions in the soil, leading to a reduction in SOM and Al concentration and an increase in pH and the levels of Ca and Mg. In the first crop year, adoption of CLI led to an increase in the levels of K and Mg and a reduction in the levels of SOM; however, in the second crop year, the rate of decline of SOM decreased compared to the decline observed in the first crop year, and the level of K increased, whereas that of P decreased. The extent of the effects of liming in terms of depth and improvement in the root environment from the treatments were observed only partially from the changes observed in the chemical properties studied.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
The objective of this work was to select semivariogram models to estimate the population density of fig fly (Zaprionus indianus; Diptera: Drosophilidae) throughout the year, using ordinary kriging. Nineteen monitoring sites were demarcated in an area of 8,200 m2, cropped with six fruit tree species: persimmon, citrus, fig, guava, apple, and peach. During a 24 month period, 106 weekly evaluations were done in these sites. The average number of adult fig flies captured weekly per trap, during each month, was subjected to the circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-Bessel, and stable semivariogram models, using ordinary kriging interpolation. The models with the best fit were selected by cross-validation. Each data set (months) has a particular spatial dependence structure, which makes it necessary to define specific models of semivariograms in order to enhance the adjustment to the experimental semivariogram. Therefore, it was not possible to determine a standard semivariogram model; instead, six theoretical models were selected: circular, Gaussian, hole effect, K-Bessel, J-Bessel, and stable.
Resumo:
The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.
Resumo:
The objective of this work was to generate drift curves from pesticide applications on coffee plants and to compare them with two European drift-prediction models. The used methodology is based on the ISO 22866 standard. The experimental design was a randomized complete block with ten replicates in a 2x20 split-plot arrangement. The evaluated factors were: two types of nozzles (hollow cone with and without air induction) and 20 parallel distances to the crop line outside of the target area, spaced at 2.5 m. Blotting papers were used as a target and placed in each of the evaluated distances. The spray solution was composed of water+rhodamine B fluorescent tracer at a concentration of 100 mg L-1, for detection by fluorimetry. A spray volume of 400 L ha-1 was applied using a hydropneumatic sprayer. The air-induction nozzle reduces the drift up to 20 m from the treated area. The application with the hollow cone nozzle results in 6.68% maximum drift in the nearest collector of the treated area. The German and Dutch models overestimate the drift at distances closest to the crop, although the Dutch model more closely approximates the drift curves generated by both spray nozzles.