33 resultados para LDL-Receptor Related Proteins
Resumo:
The Immunity Related GTPases (IRG proteins) constitute a large family of interferon-inducible proteins that mediate early resistance to Toxoplasma gondii infection in mice. At least six members of this family are required for resistance of mice to virulent T. gondii strains. Recent results have shown that the complexity of the resistance arises from complex regulatory interactions between different family members. The mode of action against T. gondii depends on the ability of IRG proteins to accumulate on the parasitophorous vacuole of invading tachyzoites and to induce local damage to the vacuole resulting in disruption of the vacuolar membrane. Virulent strains of T. gondiiovercome the IRG resistance system, probably by interfering with the loading of IRG proteins onto the parasitophorous vacuole membrane. It may be assumed that T. gondii strains highly virulent for mice will be disadvantaged in the wild due to the rapid extinction of the infected host, while it is self-evident that susceptibility to virulent strains is disadvantageous to the mouse host. We consider the possibility that this double disadvantage is compensated in wild populations by segregating alleles with different resistance and susceptibility properties in the IRG system.
Resumo:
We investigated whether sequestered Trypanosoma cruzi antigens found in heart interstitial dendritic cells (IDCs) contribute to the residual myocarditis found in mice following treatment with benznidazole, a specific chemotherapeutic drug. IDCs are antigen-presenting cells that are MHC-II-receptor dependent. Swiss mice were divided into two experimental groups: the 1st group was infected with the Colombian strain of T. cruzi, which is resistant to treatment with benznidazole, and the 2nd group was infected with clone 21SF-C 3, which has a medium susceptibility to the drug. Treatment of the Colombian strain group started on the 120th day post-infection and for the 21SF-C3 strain group treatment was started on the 90th day. In both groups, treatment lasted for 90 days. The animals were sacrificed either 150 or 200 days post-treatment. The myocardium was analysed by immunohistochemistry using anti-MAC3, 33D1, CD11b and CD11c monoclonal antibodies for IDCs or anti-T. cruzi purified antibodies. Parasite antigens were expressed on the IDC membranes in both treated and untreated mice. Myocarditis subsided following treatment, evidenced by both histological and morphometrical evaluation. A reduction in the number of IDCs carrying T. cruzi antigens in the treated group indicates that the elimination of parasites influences antigen presentation with concomitant decreases in inflammation. There is a correlation between the presence of T. cruzi antigens in these cells and the chronic focal, residual myocarditis seen in treated mice.
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.