94 resultados para Ion release
Resumo:
The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations of water content, germination, accelerated aging (AA), cold (CT) and EC vigor tests, and determinations of Ca2+, Mg2+ and K+ release to the solution, after seed soaking of four corn seed lots. The evaluations were performed each four months during a period of 16 months. For statistical analysis, a completely randomized split plot design was used with eight replications. Except for seed lots stored at 10ºC, all vigor evaluations revealed a decline in vigor, but AA and CT showed more sensitiveness to declines of seed physiological quality than EC. Potassium was the main leached ion regardless of the storage temperature.
Resumo:
This paper presents a review of the concepts involved in the working mechanism of the ion-selective electrodes, searching a historical overview, moreover to describe the new advances in the area.
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.
Resumo:
The optimization of ferrate(VI) ion generation has been studied due to its favorable characteristics for application in several fields, including environmental quality control. The paper presents the best conditions for electrolytic generation of ferrate(VI) in alkaline media. An appropriate electrolyte was NaOH, 10 mol/L. Circulation of the electrolyte solution was important to avoid acidification close to the anode surface. An anode pre-cleaning with 10% HCl was more efficient than a cathodic pre-polarization. Among the distinct anode materials tested, pig iron showed the best performance, allowing up to 20 g/L of Na2FeO4, in 10 mol/L NaOH solution to be obtained, after 7 h of reactor operation, which is a concentration higher than those found in literature for alternative processes.
Resumo:
A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
Chemical modification of clays is possible due to their ion-exchange and adsorption capacities, which allows the adjustment of the physicochemical properties of the surfaces of their layers. This modification makes possible the use of clays to produce a great number of new materials, which range from coarse applications such as oil based drilling fluids to refined applications such as pharmaceutical products. This article intends to expose where there is still space for research and investment aiming at the performance improvement of clay-based materials.
Resumo:
Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.
Resumo:
This work describes the development and validation of a dissolution test for 50 mg losartan potassium capsules using HPLC and UV spectrophotometry. A 2(4) full factorial design was carried out to optimize dissolution conditions and potassium phosphate buffer, pH 6.8 as dissolution medium, basket as apparatus at the stirring speed of 50 rpm and time of 30 min were considered adequate. Both dissolution procedure and analytical methods were validated and a statistical analysis showed that there are no significant differences between HPLC and spectrophotometry. Since there is no official monograph, this dissolution test could be applied for quality control routine.
Resumo:
The aims of this study were to formulate calcium-alginate beads containing glibenclamide, characterize the resulting microparticles, evaluate the release characteristics of this type of delivery system in an in vitro dissolution test, and compare it with two commercially available trademarks (Daonil® and Glibetab®). We obtained glibenclamide loaded calcium-alginate beads with a rough surface and a particle size between 150-200 µm. For the in vitro dissolution test Daonil® at 45 min showed a Q > 70%, whereas Glibetab® and glibenclamide calcium-alginate beads a Q < 70%; in spite of that glibenclamide calcium-alginate beads showed significant release properties.
Resumo:
The zeolite 4A was used to evaluate the thermo kinetics parameters of NH4+ and NO3- ions occluded in its structure. The Osawa method for activation energy calculation was used to evaluate its thermal stability, and the results shown that the ion species interact differently depending on the zeolite pores, which determines the controlled release by its structure.
Resumo:
This work describes the development and validation of a dissolution test for 60 mg of diltiazem hydrochloride in immediate release capsules. The best dissolution in vitro profile was achieved using potassium phosphate buffer at pH 6.8 as the dissolution medium and paddle as the apparatus at 50 rpm. The drug concentrations in the dissolution media were determined by UV spectrophotometry and HPLC and a statistical analysis revealed that there were significant differences between HPLC and spectrophotometry. This study illustrates the importance of an official method for the dissolution test, since there is no official monograph for diltiazem hydrochloride in capsules.
Resumo:
Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm), narrow polydispersity index (0.11), negative zeta potential (-15.1 mV), good yield of the process (73 ± 1.5%), excellent encapsulation efficiency (81.3 ± 4.2%) and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL) nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.
Resumo:
A simple ion pair-dispersive liquid-liquid microextraction method was proposed for preconcentration trace amounts of rhodium. An ion association complex of RhCl4- and tetradecyldimetylbenzylamonium was extracted into cholorobenzene. The volume and the type of extractive and dispersive solvents, the extraction time and the pH of the aqueous solutions were optimized. The calibration curve was linear in the range of 0.6-500 ng mL-1 of rhodium. The limit of detection was 0.10 ng mL-1 in initial solution and preconcentration factor was 40. The proposed method was successfully applied to the extraction and determination of rhodium in road dust and water samples.
Resumo:
Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.