33 resultados para Hydrated cements


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60% of their maximal work load at 32ºC and 80% relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8) and the other during the luteal phase (between days 22 and 25). Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4), whereas the others were classified as group 2 (N = 7). Post-exercise urine volume (213 ± 80 vs 309 ± 113 mL) and specific urine gravity (1.008 ± 0.003 vs 1.006 ± 0.002) changed (P < 0.05) during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05) in the luteal (3.10 ± 0.81 g m-2 min-1) than in the follicular phase (2.80 ± 0.64 g m-2 min-1) only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre- and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of Osmotic Conditioning, which consists of partial and controlled hydration of the seeds, has obtained success with various species of seeds, increasing the germinating span and tolerance to the adverse conditions of the environment, and has also reduced the time elapsed between sowing and the emergence of the plants. Associated to ideal storage conditions, the treatment has increased the performance of the seeds of tropical wood species. Aiming at studying the germinating environment and the effect of osmotic conditioning on the germination of seeds of the Australian Royal Palm tree, two experiments were performed. The first one evaluated the effect of disinfestation of the seeds of the Australian Royal Palm tree with NaClO. The treatments applied were: 0.5% sodium hypochlorite, exposure periods of 5, 15, 30, 45, 60, 90, 120 and 240 minutes, and the fungicide Captan, as control. The treatments with NaClO did not differ in relation to the final percentage of germination and to the germination speed index, and did not differ from the treatment control. The second test evaluated solutions with the following osmotic potentials: 0.0MPa (pure water), -0.4MPa, -0.6MPa and -0.8MPa, exposed for the periods of 10 and 20 days. The final percentage of germination did not differ among the treatments. The seeds hydrated in pure water for a period of 20 days showed a germination speed index significantly superior to the other treatments, and they did not show significant differences among themselves.