33 resultados para Humanities GIS
Resumo:
Geographical Information Systems (GIS) facilitate access to epidemiological data through visualization and may be consulted for the development of mathematical models and analysis by spatial statistics. Variables such as land-cover, land-use, elevations, surface temperatures, rainfall etc. emanating from earth-observing satellites, complement GIS as this information allows the analysis of disease distribution based on environmental characteristics. The strength of this approach issues from the specific environmental requirements of those causative infectious agents, which depend on intermediate hosts for their transmission. The distribution of these diseases is restricted, both by the environmental requirements of their intermediate hosts/vectors and by the ambient temperature inside these hosts, which effectively govern the speed of maturation of the parasite. This paper discusses the current capabilities with regard to satellite data collection in terms of resolution (spatial, temporal and spectral) of the sensor instruments on board drawing attention to the utility of computer-based models of the Earth for epidemiological research. Virtual globes, available from Google and other commercial firms, are superior to conventional maps as they do not only show geographical and man-made features, but also allow instant import of data-sets of specific interest, e.g. environmental parameters, demographic information etc., from the Internet.
Resumo:
The relationships between environmental exposure to risk agents and health conditions have been studied with the aid of remote sensing imagery, a tool particularly useful in the study of vegetation cover. This study aims to evaluate the influence of environmental variables on the spatial distribution of the abundance of Lutzomyia longipalpis and the reported canine and human visceral leishmaniasis (VL) cases at an urban area of Campo Grande, state of Mato Grosso do Sul. The sandfly captures were performed in 13 residences that were selected by raffle considering four residences or collection station for buffer. These buffers were generated from the central house with about 50, 100 and 200 m from it in an endemic area of VL. The abundance of sandflies and human and canine cases were georreferenced using the GIS software PCI Geomatica. The normalized difference vegetation index (NDVI) and percentage of land covered by vegetation were the environmental variables extracted from a remote sensing IKONOS-2 image. The average NDVI was considered as the complexity of habitat and the standard deviation as the heterogeneity of habitat. One thousand three hundred sixty-seven specimens were collected during the catch. We found a significant positive linear correlation between the abundance of sandflies and the percentage of vegetation cover and average NDVI. However, there was no significant association between habitat heterogeneity and the abundance of these flies.
Resumo:
Remote sensing and geographical information technologies were used to discriminate areas of high and low risk for contracting kala-azar or visceral leishmaniasis. Satellite data were digitally processed to generate maps of land cover and spectral indices, such as the normalised difference vegetation index and wetness index. To map estimated vector abundance and indoor climate data, local polynomial interpolations were used based on the weightage values. Attribute layers were prepared based on illiteracy and the unemployed proportion of the population and associated with village boundaries. Pearson's correlation coefficient was used to estimate the relationship between environmental variables and disease incidence across the study area. The cell values for each input raster in the analysis were assigned values from the evaluation scale. Simple weighting/ratings based on the degree of favourable conditions for kala-azar transmission were used for all the variables, leading to geo-environmental risk model. Variables such as, land use/land cover, vegetation conditions, surface dampness, the indoor climate, illiteracy rates and the size of the unemployed population were considered for inclusion in the geo-environmental kala-azar risk model. The risk model was stratified into areas of "risk"and "non-risk"for the disease, based on calculation of risk indices. The described approach constitutes a promising tool for microlevel kala-azar surveillance and aids in directing control efforts.