65 resultados para Fractal descriptors
Resumo:
Abstract OBJECTIVE Characterizing readmissions from orthopedic surgical site infections. METHOD An integrative review of literature in the LILACS, IBECS, MEDLINE, Cochrane, SciELO and PUBMED databases, using the descriptors Patient readmission, Wound infection, Cross infection, Orthopedic procedures, Orthopedics. RESULTS 78 studies were identified and 10 publications were selected. Surgical site infections are the most common cause of unplanned orthopedic readmissions, representing long periods of hospitalization, new surgical procedures and high costs, and greater possibility of subsequent hospitalizations. Most significant predictors have indicated average length of hospitalization, need for intensive care, emergency status at admission, risk of death, age > 65 years, males and higher body mass index. CONCLUSION Readmission rates have increasingly become measures of quality and concerns about costs. New studies could involve issues related to indirect costs, specifically social and psychological costs.
Resumo:
Polistine wasps are important in Neotropical ecosystems due to their ubiquity and diversity. Inventories have not adequately considered spatial attributes of collected specimens. Spatial data on biodiversity are important for study and mitigation of anthropogenic impacts over natural ecosystems and for protecting species. We described and analyzed local-scale spatial patterns of collecting records of wasp species, as well as spatial variation of diversity descriptors in a 2500-hectare area of an Amazon forest in Brazil. Rare species comprised the largest fraction of the fauna. Close range spatial effects were detected for most of the more common species, with clustering of presence-data at short distances. Larger spatial lag effects could also be identified in some species, constituting probably cases of exogenous autocorrelation and candidates for explanations based on environmental factors. In a few cases, significant or near significant correlations were found between five species (of Agelaia, Angiopolybia, and Mischocyttarus) and three studied environmental variables: distance to nearest stream, terrain altitude, and the type of forest canopy. However, association between these factors and biodiversity variables were generally low. When used as predictors of polistine richness in a linear multiple regression, only the coefficient for the forest canopy variable resulted significant. Some level of prediction of wasp diversity variables can be attained based on environmental variables, especially vegetation structure. Large-scale landscape and regional studies should be scheduled to address this issue.
Resumo:
Grande parte das propriedades e características dos solos estão relacionadas à quantidade e ao tipo de mineral na fração argila. Os objetivos deste trabalho foram caracterizar a fração argila e estudar as características cristalográficas das caulinitas de solos vermelhos e amarelos, visando ao entendimento das relações desse mineral com as características e propriedades dos solos dominantes na região dos Tabuleiros Costeiros e mais interioranos do Brasil. Para isso, determinou-se a relação argila grossa/argila fina e foram realizadas análises mineralógicas (qualitativa e quantitativa) por meio de DRX e aplicação do método Rietveld; caracterização espectral por ERD, para determinação da relação hematita/goethita; estimativa de propriedades cristalográficas (tamanho e microtensões), por DRX e utilizando modelos matemáticos; da superfície específica, por BET-N2; da fractalidade; do grau de desordem estrutural, por diversos índices; e análises de microscopia eletrônica de transmissão. Os resultados permitiram as seguintes conclusões: (a) a quantificação dos minerais de argila pelo método Rietveld revelou predomínio marcante das caulinitas em todos os solos estudados; (b) a análise dos espectros de DRX, aplicando-se o método Rietveld, sugere a coexistência de caulinitas triclínicas e caulinitas com caráter monoclínico; (c) as caulinitas menores que 0,2 µm de todos os solos foram similares em superfície específica BET-N2, dimensão média do cristalito no plano (001), grau de desordem estrutural e dimensão fractal, mas diferentes em sua morfologia, que se apresentou correlacionada com o material de origem.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
The objective of this work was to characterize 119 accessions of guava and 40 accessions of "araçá" sampled in 35 Brazilian ecoregions, according to the International Union for the Protection of New Varieties of Plants (UPOV) descriptors. The majority of "araçá" accessions presented wide spacing of leaf veins, while guava accessions presented medium to close spacing. Most fruits of "araçá" accessions were classified as small, contrasting with medium to large fruits of guava accessions. Most of "araçá" accessions (91%) presented white flesh fruit color, while 58% of guava accessions presented pale pink, pink and dark pink colors. Fruit differences among wild and cultivated Psidium species indicate fruit as the most altered trait under artificial selection.
Resumo:
The objective of this work was to estimate the genetic variability and divergence among 22 superior rubber tree (Hevea sp.) genotypes of the IAC 400 series. Univariate and multivariate analyses were performed using eight quantitative traits (descriptors), including yield. In the univariate analyses, the estimated parameters were: genetic and environmental variances; genetic and environmental coefficients of variation; and the variation index. The Mahalanobis generalized distance, the Tocher agglomerative method and canonical variables were used for the multivariate analyses. In the univariate analyses, variability was verified among the genotypes for all the variables evaluated. The Tocher method grouped the genotypes into 11 clusters of dissimilarity. The first four canonical variables explained 87.93% of the cumulative variation. The highest genetic variability was found in rubber yield-related traits, which contributed the most to the genetic divergence. The most divergent pairs of genotypes are suggested for crossbreeding. The genotypes evaluated are suitable for breeding and may be used to continue the IAC rubber tree breeding program.
Resumo:
The sensory, physical and chemical characteristics of 'Douradão' peaches cold stored in different modified atmosphere packaging (LDPE bags of 30, 50, 60, 75µm thickness) were studied. After 14, 21 and 28 days of cold storage (1 ± 1 ºC and 90 ± 5% RH), samples were withdrawn from MAP and kept during 4 days in ambient air for ripening. Descriptive terminology and sensory profile of the peaches were developed by methodology based on the Quantitative Descriptive Analysis (QDA). The assessors consensually defined the sensory descriptors, their respective reference materials and the descriptive evaluation ballot. Fourteen individuals were selected as judges based on their discrimination capacity and reproducibility. Seven descriptors were generated showing similarities and differences among the samples. The data were analysed by ANOVA, Tukey test and Principal Component Analysis (PCA). The atmospheres that developed inside the different packaging materials during cold storage differed significantly. The PCA showed that MA50 and MA60 treatments were more characterized by the fresh peach flavour, fresh appearance, juiciness and flesh firmness, and were effective for keeping good quality of 'Douradão' peaches during 28 d of cold storage. The Control and MA30 treatments were characterized by the mealiness, the MA75 treatment showed lower intensity for all attributes evaluated and they were ineffective to maintain good quality of the fruits during cold storage. Higher correlation coefficients (positive) were found between fresh appearance and flesh firmness (0.95), fresh appearance and juiciness (0.97), ratio and intensity of fresh peach smell (0.81), as well as higher correlation coefficients (negative) between Hue angle and intensity of yellow colour (-0.91), fresh appearance and mealiness (-0.92), juiciness and mealiness (-0.95), firmness and mealiness (-0.94).
Resumo:
The present study evaluated the sensory quality of chocolates obtained from two cocoa cultivars (PH16 and SR162) resistant to Moniliophtora perniciosa mould comparing to a conventional cocoa that is not resistant to the disease. The acceptability of the chocolates was assessed and the promising cultivars with relevant sensory and commercial attributes could be indicated to cocoa producers and chocolate manufacturers. The descriptive terminology and the sensory profile of chocolates were developed by Quantitative Descriptive Analysis (QDA). Ten panelists, selected on the basis of their discriminatory capacity and reproducibility, defined eleven sensory descriptors, their respective reference materials and the descriptive evaluation ballot. The data were analyzed using ANOVA, Principal Component Analysis (PCA) and Tukey's test to compare the means. The results revealed significant differences among the sensory profiles of the chocolates. Chocolates from the PH16 cultivar were characterized by a darker brown color, more intense flavor and odor of chocolate, bitterness and a firmer texture, which are important sensory and commercial attributes. Chocolates from the SR162 cultivar were characterized by a greater sweetness and melting quality and chocolates from the conventional treatment presented intermediate sensory characteristics between those of the other two chocolates. All samples indicated high acceptance, but chocolates from the PH16 and conventional cultivars obtained higher purchase intention scores.
Resumo:
ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.
Estudo QSPR sobre os coeficientes de partição: descritores mecânico-quânticos e análise multivariada
Resumo:
Quantum chemistry and multivariate analysis were used to estimate the partition coefficients between n-octanol and water for a serie of 188 compounds, with the values of the q 2 until 0.86 for crossvalidation test. The quantum-mechanical descriptors are obtained with ab initio calculation, using the solvation effects of the Polarizable Continuum Method. Two different Hartree-Fock bases were used, and two different ways for simulating solvent cavity formation. The results for each of the cases were analised, and each methodology proposed is indicated for particular case.
Resumo:
A model based on chemical structure was developed for the accurate prediction of octanol/water partition coefficient (K OW) of polychlorinated biphenyls (PCBs), which are molecules of environmental interest. Partial least squares (PLS) was used to build the regression model. Topological indices were used as molecular descriptors. Variable selection was performed by Hierarchical Cluster Analysis (HCA). In the modeling process, the experimental K OW measured for 30 PCBs by thin-layer chromatography - retention time (TLC-RT) has been used. The developed model (Q² = 0,990 and r² = 0,994) was used to estimate the log K OW values for the 179 PCB congeners whose K OW data have not yet been measured by TLC-RT method. The results showed that topological indices can be very useful to predict the K OW.
Resumo:
The ellipticines constitute a broad class of molecules with antitumor activity. In the present work we analyzed the structure and properties of a series of ellipticine derivatives in the gas phase and in solution using quantum mechanical and Monte Carlo methods. The results showed a good correlation between the solvation energies in water obtained with the continuum model and the Monte Carlo simulation. Molecular descriptors were considered in the development of QSAR models using the DNA association constant (log Kapp) as biological data. The results showed that the DNA binding is dominated by electronic parameters, with small contributions from the molecular volume and area.
Resumo:
Mental models play an important role in the evolution of an individual's so-called knowledge. Using such representations, students can explain, foresee, and attribute causality to observed phenomena. In the case of Chemistry, the ability to work mentally with models assumes great importance, due to the microscopic component that is characteristic of this science. With the objective of exploring students' ability to work with models, 27 students of the Chemistry Institute of UNESP were asked to describe the mechanisms of dissolution, in water, of NaCl, HCl and HCN, as well as the partial dissolution of I2. Due to difficulties of access to complex descriptors of these processes, each student was asked to explain the phenomena using words and drawings. The results of these investigations were analyzed, and enabled construction of a framework representing the Chemistry students' theoretical training, especially with respect to their most important transferred skill: an ability to model the physical world.
Resumo:
One hundred fifteen cachaça samples derived from distillation in copper stills (73) or in stainless steels (42) were analyzed for thirty five itens by chromatography and inductively coupled plasma optical emission spectrometry. The analytical data were treated through Factor Analysis (FA), Partial Least Square Discriminant Analysis (PLS-DA) and Quadratic Discriminant Analysis (QDA). The FA explained 66.0% of the database variance. PLS-DA showed that it is possible to distinguish between the two groups of cachaças with 52.8% of the database variance. QDA was used to build up a classification model using acetaldehyde, ethyl carbamate, isobutyl alcohol, benzaldehyde, acetic acid and formaldehyde as chemical descriptors. The model presented 91.7% of accuracy on predicting the apparatus in which unknown samples were distilled.
Resumo:
The concentration of 15 polycyclic aromatic hydrocarbons (PAHs) in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel) has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA) provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA), using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.