34 resultados para FLASH
Resumo:
The aim of this study was to introduce the tangential microfiltration (TMF) technique on the production of orange juice (TMFJ), and compare it with pasteurised juice (control) as regards chemical composition and sensorial characteristics. We used a TMF pilot equipped with four monotubular ceramic membranes (0.1, 0.2, 0.8 and 1.4mm) arranged in series with a filtering area of 0.005 m² each. Commercial flash-pasteurised orange juice was used as the initial product. Experiments were divided into three parts: a) the characterisation of the TMF pilot; b) optimisation of operational conditions; c) production of the TMFJ. In the second part, membrane with 0.8-mm pores presented best flux followed by those with 1.4-, 0.1-, and 0.2-mm pores. However, to guarantee permeate sterility, we chose the membrane with 0.1-mm pores for TMFJ production. Initially, the orange juice was sieved in order to separate part of the pulp, being subsequently submitted to TMF. A mixture of retentate and pulp was made, and was subsequently pasteurised. We obtained the TMFJ by adding the permeate to the mixture. TMFJ presented soluble solids content (°Brix), pulp, pH, and titrable acidity similar to the initial pasteurised juice (control). Nevertheless, 28% of vitamin C was lost during the TMFJ production. According to the juice taster panel, the control juice presented best sensorial characteristics (greater aroma intensity and fruity flavour) when compared with the TMJF.
Resumo:
The objective of this research was to test the addition of soymilk residue, also known as okara, to a molded sweet biscuit (MSB). The okara was provided by two soymilk producing companies whose production systems are based on hot disintegration of decorticated (company B) or non-decorticated (company A) soybeans and separation of the soymilk. Okaras A and B were dehydrated in a flash dryer and then ground to a flour (< 200 mesh). The okara flours showed high protein (35 g.100 g-1 dwb), lipid (17 g.100 g-1 dwb), and fiber (17 to 21 g.100 g-1 dwb) contents. The water holding capacity, protein solubility, emulsifying capacity, emulsion stability and isoflavone contents found in flour A were significantly higher (p < 0.05) than in flour B. The formulation of MSB, replacing 30% (w/w) of the wheat flour with okara flour was tested. The results of the physical measurements, brittleness and water activity of the MSB with flours A and B did not differ significantly (p < 0.05) from those of the standard. The color, flavor and overall quality of the MSB with 30% of okara flour B did not differ significantly from those of the standard biscuit, demonstrating its potential for application in confectionery products.
Resumo:
The addition of okara flour to an emulsified meat product (Frankfurter type sausage) was evaluated based on the physical, chemical, technological, and sensory characteristics of the final product. Okara, residue from soymilk production, was provided by two soymilk producing companies whose production systems were based on the hot disintegration of the decorticated (company B) or undecorticated (company A) soybeans. The okara was dehydrated using a flash dryer and then ground into flour (>420 µm). However, The okara flours A and B showed approximately the same amount of protein (35 and 40 g.100 g-1 dwb). However, the okara flour A presented higher values (p < 0.05) for all technological functional properties studied (emulsification capacity, emulsion stability, protein solubility, and water hold capacity) than those of okara flour B. The A and B okara flours were used in a frankfurter sausage formulation as substitution of 1.5% and 4% of meat. The results showed that the sausages containing okara flours A and B, as well as the control sausage, were accepted by the sensory panel. Moreover, there were no significant differences (p < 0.05) in the physical (color, objective texture, and emulsion stability) and chemical (pH and proximate composition) measurements of the sausages with and without the okara flour.
Resumo:
The impact of sodium chloride reduction and its substitution for micronized salt on consumer acceptance of turkey ham was investigated. Five formulations - F1 (control - 2.0% NaCl), F2 (1.7% NaCl), F3 (1.4% NaCl), F4 (1.7% micronized NaCl), and F5 (1.4% micronized NaCl) - were evaluated with respect to sodium chloride content and by consumers using a nine-point hedonic scale for overall acceptability and CATA (check-all-that-apply) using 24 sensory descriptors. Trained panelists characterized the products using the flash profiling technique. Reductions in the salt content by up to 30% did not affect the overall acceptability of the samples by the consumers. However, the consumers characterized the formulations with lower salt content as "less salty and less seasoned" in comparison to the contents in the control. Products containing 1.7% NaCl were considered very similar to the control. The results obtained indicate that it is possible to reduce NaCl content by 30% without affecting consumer acceptance of the product. The use of micronized salt did not affect the sensory characteristics when compared with those of formulations containing the same level of sodium chloride indicating that micronized salt does not influence perception of salt.