160 resultados para Exercise Echocardiography
Resumo:
OBJECTIVE: Doppler tissue imaging (DTI) enables the study of the velocity of contraction and relaxation of myocardial segments. We established standards for the peak velocity of the different myocardial segments of the left ventricle in systole and diastole, and correlated them with the electrocardiogram. METHODS: We studied 35 healthy individuals (27 were male) with ages ranging from 12 to 59 years (32.9 ± 10.6). Systolic and diastolic peak velocities were assessed by Doppler tissue imaging in 12 segments of the left ventricle, establishing their mean values and the temporal correlation with the cardiac cycle. RESULTS: The means (and standard deviation) of the peak velocities in the basal, medial, and apical regions (of the septal, anterior, lateral, and posterior left ventricle walls) were respectively, in cm/s, 7.35(1.64), 5.26(1.88), and 3.33(1.58) in systole and 10.56(2.34), 7.92(2.37), and 3.98(1.64) in diastole. The mean time in which systolic peak velocity was recorded was 131.59ms (±19.12ms), and diastolic was 459.18ms (±18.13ms) based on the peak of the R wave of the electrocardiogram. CONCLUSION: In healthy individuals, maximum left ventricle segment velocities decreased from the bases to the ventricular apex, with certain proportionality between contraction and relaxation (P<0.05). The use of Doppler tissue imaging may be very helpful in detecting early alterations in ventricular contraction and relaxation.
Resumo:
OBJECTIVE: To test the feasibility, safety and accuracy of the adenosine protocol in the study of myocardial perfusion with microbubbles contrast echocardiography. METHODS: 81 pts (64 male, 60+11 years) were submitted to contrast echocardiography with PESDA (sonicated solution of albumin 20%-1ml, dextrose 5%-12ml and deca-fluorobutane gas-8ml) to study the myocardial perfusion at rest and after bolus injection of adenosine (6 to 18mg) and to coronary angiography within 1 month each other. For each patient 3 left ventricle perfusion beds were considered (total of 243 territories). 208 territories were analyzed and 35 territories were excluded. PESDA was continuously infused (1-2ml/min), titrated for best myocardial contrast. Triggered (1:1) second harmonic imaging was used. RESULTS: Coronary angiography showed 70 flow limiting (> 75%) lesions and 138 no flow limiting lesions. At rest an obvious myocardium contrast enhancement was seen in at least 1 segment of a territory in all patients. After adenosine injection an unquestionable further increase in myocardial contrast was observed in 136 territories (99%) related to no flow limiting lesions, lasting < 10 s, and a myocardial perfusion defect was detected in 68 territories (97%) related to flow limiting lesions. It was observed only 4 false results. There were no serious complications. CONCLUSION: Myocardial perfusion study with PESDA and adenosine protocol is a practical, safe and accurate method to analyze the coronary flow reserve.
Resumo:
OBJECTIVE - To evaluate the Coronary Flow Reserve in the Coronary Sinus through transesophageal Doppler echocardiography in normal subjects. METHODS - We obtained technically adequate flow samples for analysis in 10 healthy volunteers (37±8 years, 5 men) with no history of heart or systemic disease and with mean left ventricular mass index by transthoracic echocardiography of 87±18 g/m². Coronary sinus flow velocity was recorded within the coronary sinus with the patient in a resting condition and during intravenous adenosine infusion at a dose of 140 µg/kg/min for 4 minutes. Recording of coronary sinus blood flow was possible in all cases with measurement of peak systolic, diastolic, and retrograde velocities (PSV, PDV, and PRV, cm/sec), mean systolic and diastolic velocities (MSV and MDV, cm/sec), and systolic and diastolic velocity time integral (VTI S and VTI D, cm/sec). RESULTS - The coronary flow reserve was calculated as the ratio between the blood flow in the basal state and the maximum measured hyperemic blood flow with adenosine infusion. Results are shown as mean and standard deviations. (CFR = PSV + PDV -- PRV/basal PSV): 1st min = 2.2±0.21; 2nd min = 3±0.3; 3rd min = 3.4±0.37; 4th min = 3.6 ± 0.33. CONCLUSION - Although coronary sinus flow had significantly increased in the first minute, higher velocities were seen at third and fourth minutes, indicating that these should be the best times to study coronary sinus flow with intravenous adenosine in continuous infusion.
Resumo:
OBJECTIVE: To assess the safety and efficacy of unsupervised rehabilitation (USR) in the long run in low-risk patients with coronary artery disease. METHODS: We carried out a retrospective study with 30 patients divided into: group I (GI) - 15 patients from private clinics undergoing unsupervised rehabilitation; group II (GII) - control group, 15 patients from ambulatory clinic basis, paired by age, sex, and clinical findings. GI was stimulated to exercise under indirect supervision (jogging, treadmill, and sports). GII received the usual clinical treatment. RESULTS: The pre- and postobservation values in GI were, respectively: VO2peak (mL/kg/min), 24±5 and 31± 9; VO2 peak/peak HR: 0.18±0.05 and 0.28±0.13; peak double product (DP peak):26,800±7,000 and 29,000 ± 6,500; % peak HR/predicted HRmax: 89.5±9 and 89.3±9. The pre- and post- values in GII were: VO2 peak (mL/kg/min), 27± 7 and 28±5; VO2 peak/peak HR: 0.2±0.06 and 0.2± 0.05; DP peak: 24,900±8,000 and 25,600± 8,000, and % peak HR/predicted HRmax: 91.3±9 and 91.1± 11. The following values were significant: preobservation VO2peak versus postobservation VO2peak in GI (p=0.0 063); postobservation VO2peak in GI versus postobservation VO2peak in GII (p=0.0045); postobservation VO2 peak/peak HR GI versus postobservation peak VO2/peak HR in GII (p=0.0000). The follow-up periods in GI and GII were, respectively, 41.33± 20.19 months and 20.60±8.16 months (p<0.05). No difference between the groups was observed in coronary risk factors, therapeutic management, or evolution of ischemia. No cardiovascular events secondary to USR were observed in 620 patient-months. CONCLUSION: USR was safe and efficient, in low-risk patients with coronary artery disease and provided benefits at the peripheral level.
Resumo:
OBJECTIVE: Exercise training programs have been proposed as adjuncts to treatment of heart failure. The effects of a 3-month-exercise-training-program with 3 exercise sessions per week were assessed in patients with stable systolic chronic heart failure. METHODS: We studied 24 patients with final left ventricle diastolic diameter of 70±10mm and left ventricular ejection fraction of 37±4%. Mean age was 52±16 years. Twelve patients were assigned to an exercise training group (G1), and 12 patients were assigned to a control group (G2). Patients underwent treadmill testing, before and after exercise training, to assess distance walked, heart rate, systolic blood pressure, and double product. RESULTS: In G2 group, before and after 3 months, we observed, respectively distance walked, 623±553 and 561± 460m (ns); peak heart rate, 142±23 and 146± 33b/min (ns); systolic blood pressure, 154±36 and 164±26 mmHg (ns); and double product, 22211± 6454 and 24293±7373 (ns). In G1 group, before and after exercise, we observed: distance walked, 615±394 and 970± 537m (p<0.003) peak heart rate, 143±24 and 143±29b/min (ns); systolic blood pressure, 136±33 and 133±24 mmHg (ns); and double product, 19907± 7323 and 19115±5776, respectively. Comparing the groups, a significant difference existed regarding the variation in the double product, and in distance walked. CONCLUSION: Exercise training programs in patients with heart failure can bring about an improvement in physical capacity.
Resumo:
OBJECTIVE: To compare blood pressure response to dynamic exercise in hypertensive patients taking trandolapril or captopril. METHODS: We carried out a prospective, randomized, blinded study with 40 patients with primary hypertension and no other associated disease. The patients were divided into 2 groups (n=20), paired by age, sex, race, and body mass index, and underwent 2 symptom-limited exercise tests on a treadmill before and after 30 days of treatment with captopril (75 to 150 mg/day) or trandolapril (2 to 4 mg/day). RESULTS: The groups were similar prior to treatment (p<0.05), and both drugs reduced blood pressure at rest (p<0.001). During treatment, trandolapril caused a greater increase in functional capacity (+31%) than captopril (+17%; p=0.01) did, and provided better blood pressure control during exercise, observed as a reduction in the variation of systolic blood pressure/MET (trandolapril: 10.7±1.9 mmHg/U vs 7.4±1.2 mmHg/U, p=0.02; captopril: 9.1±1.4 mmHg/U vs 11.4±2.5 mmHg/U, p=0.35), a reduction in peak diastolic blood pressure (trandolapril: 116.8±3.1 mmHg vs 108.1±2.5 mmHg, p=0.003; captopril: 118.2±3.1 mmHg vs 115.8±3.3 mmHg, p=0.35), and a reduction in the interruption of the tests due to excessive elevation in blood pressure (trandolapril: 50% vs 15%, p=0.009; captopril: 50% vs 45%, p=0.32). CONCLUSION: Monotherapy with trandolapril is more effective than that with captopril to control blood pressure during exercise in hypertensive patients.
Resumo:
OBJECTIVE: To characterize left ventricular regional myocardial function through tissue Doppler echocardiography in healthy adults and to assess the influence of aging in this function. METHODS: In 45 healthy volunteers divided in two groups (< 45 and > 45 years old) we assessed longitudinal and radial regional function (velocities, times intervals and velocity-time integrals). Data were compared in each group and between groups. RESULTS: Systolic function: a) longitudinal: higher velocities and integrals in lateral and inferior walls and in basal segments, with a trend to reduction of these parameters with aging; b) radial: higher basal velocities, no significant change with aging. Diastolic function: a) longitudinal: higher velocities in lateral and inferior walls and in basal segments. With aging e and e/a velocities and integrals decreased, a increased and older individuals showed lower percentage of segments with e/a >1; b) radial: aging was associated with lower e and higher a velocities. CONCLUSION: 1) Tissue Doppler echocardiography detects physiological differences between regional myocardial function of different ventricular segments, in velocities, times intervals and integrals, with physiological heterogeneity and asynchrony; 2) Many of these data are age dependent; 3) Our data contribute to define normal values, and may become useful when compared with data from populations with heart diseases.
Resumo:
OBJECTIVE: To assess safety, feasibility, and the results of early exercise testing in patients with chest pain admitted to the emergency room of the chest pain unit, in whom acute myocardial infarction and high-risk unstable angina had been ruled out. METHODS: A study including 1060 consecutive patients with chest pain admitted to the emergency room of the chest pain unit was carried out. Of them, 677 (64%) patients were eligible for exercise testing, but only 268 (40%) underwent the test. RESULTS: The mean age of the patients studied was 51.7±12.1 years, and 188 (70%) were males. Twenty-eight (10%) patients had a previous history of coronary artery disease, 244 (91%) had a normal or unspecific electrocardiogram, and 150 (56%) underwent exercise testing within a 12-hour interval. The results of the exercise test in the latter group were as follows: 34 (13%) were positive, 191 (71%) were negative, and 43 (16%) were inconclusive. In the group of patients with a positive exercise test, 21 (62%) underwent coronary angiography, 11 underwent angioplasty, and 2 underwent myocardial revascularization. In a univariate analysis, type A/B chest pain (definitely/probably anginal) (p<0.0001), previous coronary artery disease (p<0.0001), and route 2 (patients at higher risk) correlated with a positive or inconclusive test (p<0.0001). CONCLUSION: In patients with chest pain and in whom acute myocardial infarction and high-risk unstable angina had been ruled out, the exercise test proved to be feasible, safe, and well tolerated.
Resumo:
OBJECTIVE: To assess the influence of skeletal muscle mass on ventilatory and hemodynamic variables during exercise in patients with chronic heart failure (CHF). METHODS: Twenty-five male patients underwent maximum cardiopulmonary exercise testing on a treadmill with a ramp protocol and measurement of the skeletal muscle mass of their thighs by using magnetic resonance imaging. The clinically stable, noncachectic patients were assessed and compared with 14 healthy individuals (S) paired by age and body mass index, who underwent the same examinations. RESULTS: Similar values of skeletal muscle mass were found in both groups (CHF group: 3863 ± 874 g; S group: 3743 ± 540 g; p = 0.32). Significant correlations of oxygen consumption in the anaerobic threshold (CHF: r = 0.39; P= 0.02 and S: r = 0.14; P = 0.31) and of oxygen pulse also in the anaerobic threshold (CHF: r = 0.49; P = 0.01 and S: r =0.12; P = 0.36) were found only in the group of patients with chronic heart failure. CONCLUSION: The results obtained indicate that skeletal muscle mass may influence the capacity of patients with CHF to withstand submaximal effort, due to limitations in their physical condition, even maintaining a value similar to that of healthy individuals. This suggests qualitative changes in the musculature.
Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats
Resumo:
Background: Resistance exercise effects on cardiovascular parameters are not consistent. Objectives: The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Methods: Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. Results: A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Conclusions: Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.
Resumo:
Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.
Resumo:
Background: Heart rate variability (HRV) is a marker of autonomic dysfunction severity. The effects of physical training on HRV indexes in Chagas heart disease (CHD) are not well established. Objective: To evaluate the changes in HRV indexes in response to physical training in CHD. Methods: Patients with CHD and left ventricular (LV) dysfunction, physically inactive, were randomized either to the intervention (IG, N = 18) or control group (CG, N = 19). The IG participated in a 12-week exercise program consisting of 3 sessions/week. Results: Mean age was 49.5 ± 8 years, 59% males, mean LVEF was 36.3 ± 7.8%. Baseline HRV indexes were similar between groups. From baseline to follow-up, total power (TP): 1653 (IQ 625 - 3418) to 2794 (1617 - 4452) ms, p = 0.02) and very low frequency power: 586 (290 - 1565) to 815 (610 - 1425) ms, p = 0.047) increased in the IG, but not in the CG. The delta (post - pre) HRV indexes were similar: SDNN 11.5 ± 30.0 vs. 3.7 ± 25.1 ms. p = 0.10; rMSSD 2 (6 - 17) vs. 1 (21 - 9) ms. p = 0.43; TP 943 (731 - 3130) vs. 1780 (921 - 2743) Hz. p = 0.46; low frequency power (LFP) 1.0 (150 - 197) vs. 60 (111 - 146) Hz. p = 0.85; except for high frequency power, which tended to increase in the IG: 42 (133 - 92) vs. 79 (61 - 328) Hz. p = 0.08). Conclusion: In the studied population, the variation of HRV indexes was similar between the active and inactive groups. Clinical improvement with physical activity seems to be independent from autonomic dysfunction markers in CHD.
Resumo:
Background: Although exercise training is known to promote post-exercise hypotension, there is currently no consistent argument about the effects of manipulating its various components (intensity, duration, rest periods, types of exercise, training methods) on the magnitude and duration of hypotensive response. Objective: To compare the effect of continuous and interval exercises on hypotensive response magnitude and duration in hypertensive patients by using ambulatory blood pressure monitoring (ABPM). Methods: The sample consisted of 20 elderly hypertensives. Each participant underwent three ABPM sessions: one control ABPM, without exercise; one ABPM after continuous exercise; and one ABPM after interval exercise. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR) and double product (DP) were monitored to check post-exercise hypotension and for comparison between each ABPM. Results: ABPM after continuous exercise and after interval exercise showed post-exercise hypotension and a significant reduction (p < 0.05) in SBP, DBP, MAP and DP for 20 hours as compared with control ABPM. Comparing ABPM after continuous and ABPM after interval exercise, a significant reduction (p < 0.05) in SBP, DBP, MAP and DP was observed in the latter. Conclusion: Continuous and interval exercise trainings promote post-exercise hypotension with reduction in SBP, DBP, MAP and DP in the 20 hours following exercise. Interval exercise training causes greater post-exercise hypotension and lower cardiovascular overload as compared with continuous exercise.
Incremental Value Of 3D Transesophageal Echocardiography for The Assessment of Mitral Valve Prolapse
Resumo:
Background: Physiological reflexes modulated primarily by the vagus nerve allow the heart to decelerate and accelerate rapidly after a deep inspiration followed by rapid movement of the limbs. This is the physiological and pharmacologically validated basis for the 4-s exercise test (4sET) used to assess the vagal modulation of cardiac chronotropism. Objective: To present reference data for 4sET in healthy adults. Methods: After applying strict clinical inclusion/exclusion criteria, 1,605 healthy adults (61% men) aged between 18 and 81 years subjected to 4sET were evaluated between 1994 and 2014. Using 4sET, the cardiac vagal index (CVI) was obtained by calculating the ratio between the duration of two RR intervals in the electrocardiogram: 1) after a 4-s rapid and deep breath and immediately before pedaling and 2) at the end of a rapid and resistance-free 4-s pedaling exercise. Results: CVI varied inversely with age (r = -0.33, p < 0.01), and the intercepts and slopes of the linear regressions between CVI and age were similar for men and women (p > 0.05). Considering the heteroscedasticity and the asymmetry of the distribution of the CVI values according to age, we chose to express the reference values in percentiles for eight age groups (years): 18–30, 31–40, 41–45, 46–50, 51–55, 56–60, 61–65, and 66+, obtaining progressively lower median CVI values ranging from 1.63 to 1.24. Conclusion: The availability of CVI percentiles for different age groups should promote the clinical use of 4sET, which is a simple and safe procedure for the evaluation of vagal modulation of cardiac chronotropism.