130 resultados para Endogenous mechanisms
Resumo:
During the course of experimental Chagas' disease, several immune disorders occur. In the acute phase, T and B cell plyclonal activation is associated to immunossupression. At the chronic stage. T cells - of the TH2 subset - participate to the pathology characteristic of Chagas'disease. Data obtained after infection of BALB/Xid mice suggest that polyclonal activation may be dependent on B1 (CD5) cell activation. Moreover, these mice fail to develop the pathological features of the chronic infection. Control of lymphokine secretion might play a key role in the clinical status of Chagas'disease.
Resumo:
Mechanisms of immune protection against the asexual blood stage infection by Plasmodium falciparum are reviewed. Recent studies of two independent lines of research developed at the Institute Pasteur, in humans and primate infections clearly indicate an obligatory interaction of antibodies and effector cells to express the anti-parasitic effect.
Resumo:
Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.
Resumo:
The most unique characteristic of a parasite when it is in its normal host is the ability to make itself tolerated, which clearly indicates that it has sophisticated means to ensure the neutrality of its host. This is true also in the case of Plasmodium falciparum, since after numerous malaria attacks an equilibrium is reached with a chronic stage of infection, characterized by a relatively low parasitemia, and low or no disease (Sergent & Parrot 1935). We shall briefly review the main characteristics of this state of "premunition", and present data suggesting that the underlying mechanisms of defense rely on the cooperation between cell and antibodies, leading to an antibody dependent cellular inhibition of the intra-erythrocytic growth of the parasite.
Resumo:
The interaction of Schistosoma mansoni with its host's immune system is largely affected by multiple specific and non-specific evasion mechanisms employed by the parasite to reduce the host's immune reactivity. Only little is known about these mechanisms on the molecular level. The four molecules described below are intrinsic parasitic proteins recently identified and studied in our laboratory. 1. m28-A 28kDa membrane serine protease. m28 cleaves iC3b and can thus restrict attack by effector cells utilizing complement receptors (especially CR3). Treatment with protease inhibitors potentiates killing of schistosomula by complement plus neutrophils. 2. Smpi56-A 56kDa serine protease inhibitor. Smpi56 binds covalently to m28 and to neutrophil's elastase and blocks their proteolytic activity. 3. P70-A 70kDa C3b binding protein. The postulated activity of P70 includes binding to C3b and blocking of complement activation of the C3 step. 4. SCIP-1-A 94kDa schistosome complement inhibitor. SCIP-1 shows antigenic and functional similarities to the human 18kDa complement inhibitor CD59. Like CD59, SCIP-1 binds to C8 and C9 and blocks formation of the complement membrane attack complex. Antibodies directed to human CD59 bind to schistosomula and potentiate their killing by complement. The structure and function of these four proteins as well as their capacity to induce protection from infection with S. mansoni are under investigation.
Resumo:
The ultrastructure of endogenous stages of Eimeria ninakohlyakimovae was observed in epithelial cells of cecum and colon crypts from a goat experimentally infected with 2.0 x 105 oocysts/kg. The secondary meronts developed above the nucleus of the host cell. The nucleus first divides and merozoites then form on the surface of multinucleated meronts. Free merozoites in the parasitophorous vacuole present a conoid, double membrane, one pair of rhoptries, micronemes, micropore, anterior and posterior polar ring, a nucleus with a nucleolus and peripheral chromatin. The microgamonts are located below the nucleus of the host cell and contain several nuclei at the periphery of the parasite. The microgametes consist of a body, a nucleus, three flagella and mitochondria. The macrogamonts develop below the nucleus of the host cell and have a large nucleus with a prominent nucleolus. The macrogametes contain a nucleus, wall-forming bodies of type I and type II. The young oocysts present a wall containing two layers and a sporont
Resumo:
Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.
Antigen-induced pleural eosinophilia is suppressed in diabetic rats: role of corticosteroid hormones
Resumo:
Previous studies have evidenced for the existence of interactive regulatory mechanisms between insulin and steroid hormones in different systems. In this study, we have investigated whether endogenous corticosteroids could be implicated in the hyporeactivity to antigen challenge observed in sensitized diabetic rats. Alloxinated rats showed a long-lasting increase in the blood glucose levels and a reduction in the number of pleural mast cells at 48 and 72 hr, but not at 24 hr after alloxan administration. In parallel, they also showed a significant elevation in the plasma levels of corticosterone together with an increase in the adrenal/body weight ratio. Antigen-evoked eosinophil accumulation appeared significantly reduced in rats pretreated with dexamethasone as well as in those rendered diabetic 72 hr after alloxan. In the same way, naive animals treated with dexamethasone also responded with a significant decrease in the number of pleural mast cells. Interestingly, when sensitized diabetic rats were pretreated with the steroid antagonist RU 38486 a reversion of the reduction in the allergen-induced eosinophil accumulation was noted. We conclude that the down-regulation of the allergic inflammatory response in diabetic rats is close-related to reduction in mast cell numbers and over expression of endogenous corticosteroids.
Resumo:
Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
Resumo:
To establish an insecticidal resistance surveillance program, Culex quinquefasciatus mosquitoes from São Paulo, Brazil, were colonized (PIN95 strain) and analyzed for levels of resistance. The PIN95 strain showed low levels of resistance to organophosphates [malathion (3.3-fold), fenitrothion (11.2-fold)] and a carbamate [propoxur (3.0-fold)]. We also observed an increase of 7.4 and 9.9 in a and b esterase activities, respectively, when compared with the reference IAL strain. An alteration in the sensitivity of acetylcholinesterase to insecticide inhibition was also found in the PIN95 mosquitoes. The resistant allele (Ace.1R), however, was found at low frequencies (0.12) and does not play an important role in the described insecticide resistance. One year later, Cx. quinquefasciatus mosquitoes were collected (PIN96 strain) at the same site and compared to the PIN95 strain. The esterase activity patterns observed for the PIN96 strain were similar to those of the PIN95 mosquitoes. However the occurrence of the Ace.1R allele was statistically higher in the PIN96 strain. The results show that esterase-based insecticide resistance was established in the PIN95 Cx. quinquefasciatus population and that an acethylcholinesterase based resistant mechanism has been selected for. A continuous monitoring of this phenomenon is fundamental for rational mosquito control and insecticide application programs.
Resumo:
Antigenic variation in Trypanosoma brucei is a highly sophisticated survival strategy involving switching between the transcription of one of an estimated thousand variant surface glycoprotein (VSG) genes. Switching involves either transcriptional control, resulting in switching between different VSG expression sites; or DNA rearrangement events slotting previously inactive VSG genes into an active VSG expression site. In recent years, considerable progress has been made in techniques allowing us to genetically modify infective bloodstream form trypanosomes. This is allowing us to reengineer VSG expression sites, and look at the effect on the mechanisms subsequently used for antigenic variation. We can now begin a dissection of a highly complicated survival strategy mediated by many different mechanisms operating simultaneously.
Resumo:
Redescriptions are given of the mature oocysts of Isospora ameivae Carini, 1932, from the teiid lizard Ameiva ameiva, and Isospora hemidactyli Carini,1936 from the gecko Hemidactylus mabouia, in north Brazil. The endogenous stages of the two parasites in the small intestine are described. Those of I. ameivae are intracytoplasmic, whereas those of I. hemidactyli are intranuclear.
Resumo:
The ultrastructure is described of the meronts, microgamonts and young oocyst stages of Isospora hemidactyli of the gecko Hemidactylus mabouia from Belém, PA, north Brazil. The endogenous stages all develop in the nucleus of the gut epithelial cells. The nucleus remains intact up to the latest stages of the parasite's development, but degenerates by the time the oocyst appears. Merogonic division appears to be asynchronous, and some of the differentiated merozoites contained more than one nucleus. Microgamonts conform in structure with those of other eimeriids. Some of the type 2 wall-forming bodies disintegrate into smaller globules and ground substance of lower density.
Resumo:
This study examined the role and source of endogenous interleukin-10 (IL) secretion in visceral leishmaniasis (VL). The amounts of endogenous and Leishmania specific IL-10 and interferon-gamma (IFN) secreted by peripheral blood mononuclear cells (PBMC) from VL patients were compared. The correlation coefficient between endogenous IL-10 secretion and Leishmania specific IFN-gamma was -0.77, suggesting a major role for endogenous IL-10 secretion in VL. The effects of CD4+ and CD8+ T cell clones, isolated from a treated VL patient, on IL-10 secretion were assayed by mixing the clones with autologous, inactivated PBMC. The CD8+ clones mediated increased levels of IL-10 secretion in the presence of PBMC alone suggesting that CD8+ T cells may mediate endogenous IL-10 secretion.