47 resultados para Embedded crack elements
Resumo:
Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.
Resumo:
The aim of this work was to quantify low molecular weight organic acids in the rhizosphere of plants grown in a sewage sludge-treated media, and to assess the correlation between the release of the acids and the concentrations of trace-elements in the shoots of the plants. The species utilized in the experiment were cultivated in sand and sewage sludge-treated sand. The acetic, citric, lactic, and oxalic acids, were identified and quantified by high performance liquid chromatography in samples collected from a hydroponics system. Averages obtained from each treatment, concentration of trace elements in shoots and concentration of organic acids in the rhizosphere, were compared by Tukey test, at 5% of probability. Linear correlation analysis was applied to verify an association between the concentrations of organic acids and of trace elements. The average composition of organic acids for all plants was: 43.2, 31.1, 20.4 and 5.3% for acetic, citric, lactic, and oxalic acids, respectively. All organic acids evaluated, except for the citric acid, showed a close statistical agreement with the concentrations of Cd, Cu, Ni, and Zn found in the shoots. There is a positive relationship between organic acids present in the rhizosphere and trace element phytoavailability.
Resumo:
Honey is a food used since the most remote times, appreciated for its characteristic flavor, considerable nutritional value and medicinal properties; however, little information exists about the presence of chemical elements in it. The objectives of this work were to determine the chemical elements present in 38 honey samples, collected directly from beekeepers from the State of Piauí, Brazil and to verify whether they presented any contamination. The chemical elements were determined by means of Total Reflection X-ray Fluorescence. The means of three replicates were: K (109.671 ± 17.487), Ca (14.471 ± 3.8797), Ti (0.112 ± 0.07), Cr (0.196 ± 0.11), Mn (0.493 ± 0.103), Fe (1.722 ± 0.446), Co (0.038), Ni (0.728 ± 0.706), Cu (0.179 ± 0.0471), Zn (0.967 ± 0.653), Se (not detected), Br (not detected), Rb (0.371 ± 0.097), Sr (0.145 ± 0.45), Ba (11.681), Hg (not detected), and Pb (0.863) µg g-1.
Resumo:
The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum) shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-)quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u) was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z) shows a quasi-smoothed dependence of Z, i.e., u(Z) ≈ Z2/5 - 1.
Resumo:
Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s¹ and s0 configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations.
Resumo:
Semiempirical calculations at the level of PM3 of theory were carried out to study the structural and electronic properties of C80 and some of its doped derivatives with the elements of group III and V at the level of PM3 of theory. We have selected these elements to be substituted in the fullerene-C80 cage in order to show the effect of such structural change on the electronic properties of the molecules studied. The theoretical IR spectra, some of physical and chemical properties of the molecules studied are obtained and discussed.
Resumo:
Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetracoordinated Sn compounds of the CH3SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH3, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-311++G** basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms.
Resumo:
Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.
Resumo:
Blackleg is caused by Clostridium chauvoei, whereas malignant oedema is caused by C. chauvoei, C. septicum, C. sordellii, C. perfringens type A, and/or C. novyi type A. Anti-C. chauvoei, anti-C. septicum, anti-C. sordellii and anti-C. novyi type A polyclonal antibodies were produced in rabbits and purified in a column of DEAE-cellulose. Aliquots of the antisera were conjugated with fluorescein isothiocyanate and the remaining was used for the streptavidin biotin peroxidase technique (SBPT). SBPT was standardized to detect C. chauvoei, C. septicum, C. sordellii and C. novyi type A in formalin-fixed, paraffin-embedded tissues of guinea pigs. SBPT was compared to a fluorescent antibody technique (FAT). Sections and smears of muscle from inoculation area (MIA), heart, liver, spleen and kidney, were obtained for both SBPT and FAT. Cross-reactions between the different Clostridial species were not observed. C. chauvoei and C. septicum were detected in all specimens from the animals inoculated with these microorganisms, while only sections of muscle obtained from all the animals inoculated with C. sordellii and C. novyi type A were positive. The same results observed by the SBPT, were obtained on tissue smears of these microorganisms stained by the FAT. The results indicate that SBPT is suitable for detection of C. chauvoei, C. septicum, C. sordellii and C. novyi type A in formalin-fixed, paraffin-embedded tissues of guinea pigs.
Resumo:
The diagnosis of Mycoplasma hyopneumoniae infection is often performed through histopathology, immunohistochemistry (IHC) and polymerase chain reaction (PCR) or a combination of these techniques. PCR can be performed on samples using several conservation methods, including swabs, frozen tissue or formalin-fixed and paraffin-embedded (FFPE) tissue. However, the formalin fixation process often inhibits DNA amplification. To evaluate whether M. hyopneumoniae DNA could be recovered from FFPE tissues, 15 lungs with cranioventral consolidation lesions were collected in a slaughterhouse from swine bred in herds with respiratory disease. Bronchial swabs and fresh lung tissue were collected, and a fragment of the corresponding lung section was placed in neutral buffered formalin for 48 hours. A PCR assay was performed to compare FFPE tissue samples with samples that were only refrigerated (bronchial swabs) or frozen (tissue pieces). M. hyopneumoniae was detected by PCR in all 15 samples of the swab and frozen tissue, while it was detected in only 11 of the 15 FFPE samples. Histological features of M. hyopneumoniae infection were presented in 11 cases and 7 of these samples stained positive in IHC. Concordance between the histological features and detection results was observed in 13 of the FFPE tissue samples. PCR was the most sensitive technique. Comparison of different sample conservation methods indicated that it is possible to detect M. hyopneumoniae from FFPE tissue. It is important to conduct further research using archived material because the efficiency of PCR could be compromised under these conditions.
Resumo:
This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.
Resumo:
Crack formation and growth in steel bridge structural elements may be due to loading oscillations. The welded elements are liable to internal discontinuities along welded joints and sensible to stress variations. The evaluation of the remaining life of a bridge is needed to make cost-effective decisions regarding inspection, repair, rehabilitation, and replacement. A steel beam model has been proposed to simulate crack openings due to cyclic loads. Two possible alternatives have been considered to model crack propagation, which the initial phase is based on the linear fracture mechanics. Then, the model is extended to take into account the elastoplastic fracture mechanic concepts. The natural frequency changes are directly related to moment of inertia variation and consequently to a reduction in the flexural stiffness of a steel beam. Thus, it is possible to adopt a nondestructive technique during steel bridge inspection to quantify the structure eigenvalue variation that will be used to localize the grown fracture. A damage detection algorithm is developed for the proposed model and the numerical results are compared with the solutions achieved by using another well know computer code.
Resumo:
In the present study we evaluated the binding of the radiopharmaceuticals sodium pertechnetate (Na 99mTcO4), methylenediphosphonic acid (99mTc-MDP) and glucoheptonate acid (99mTc-GHA) to blood elements using centrifugation and radioautographic techniques. Heparinized blood was incubated with the labelled compounds for 0, 1, 2, 3, 4, 6 and 24 h. Plasma (P) and blood cells (BC) were isolated and precipitated with 5% trichloroacetic acid (TCA), and soluble (SF) and insoluble fractions (IF) were separated. Blood samples were prepared (0 and 24 h) and coated with LM-1 radioautographic emulsions and percent radioactivity (%rad) in P and BC was determined. The binding of Na 99mTcO4 (%rad) to P was 61.2% (0 h) and 46.0% (24 h), and radioautography showed 63.7% (0 h) and 43.3% (24 h). The binding to BC was 38.8% (0 h) and 54.0% (24 h), and radioautography showed 36.3% (0 h) and 56.7% (24 h). 99mTc-MDP study presented 91.1% (0 h) to P and 87.2% (24 h), and radioautography showed 67.9% (0 h) and 67.4% (24 h). The binding to BC was 8.9% (0 h) and 12.8% (24 h), and radioautography showed 32.1% (0 h) and 32.6% (24 h). 99mTc-GHA study was 90.1% (0 h) to P and 79.9% (24 h), and radioautography showed 67.2% (0 h) and 60.1% (24 h). The binding to BC was 9.9% (0 h) and 20.1% (24 h), and radioautography showed 32.8% (0 h) and 39.9% (24 h). The comparison of the obtained results suggests that the binding to plasma and blood cells in the two techniques used (radioautography and centrifugation) is qualitatively in accordance
Resumo:
Ginkgo biloba extract (EGb) is a phytotherapeutic agent used for the treatment of ischemic and neurological disorders. Because the action of this important extract is not fully known, assays using different biological systems need to be performed. Red blood cells (RBC) are labeled with technetium-99m (Tc-99m) and used in nuclear medicine. The labeling depends on a reducing agent, usually stannous chloride (SnCl2). We assessed the effect of different concentrations of EGb on the labeling of blood constituents with Tc-99m, as sodium pertechnetate (3.7 MBq), and on the mobility of a plasmid DNA treated with SnCl2 (1.2 µg/ml) at room temperature. Blood was incubated with EGb before the addition of SnCl2 and Tc-99m. Plasma (P) and RBC were separated and precipitated with trichloroacetic acid, and soluble (SF-P and SF-RBC) and insoluble (IF-P and IF-RBC) fractions were isolated. The plasmid was incubated with Egb, SnCl2 or EGb plus SnCl2 and agarose gel electrophoresis was performed. The gel was stained with ethidium bromide and the DNA bands were visualized by fluorescence in an ultraviolet transilluminator system. EGb decreased the labeling of RBC, IF-P and IF-RBC. The supercoiled form of the plasmid was modified by treatment with SnCl2 and protected by 40 mg/ml EGb. The effect of EGb on the tested systems may be due to its chelating action with the stannous ions and/or pertechnetate or to the capability to generate reactive oxygen species that could oxidize the stannous ion.