39 resultados para EQUINE EYE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract:Lawsonia intracellularis infection on a horse farm in the Midwest region of Brazil is described. Thirty-nine foals a few days to months old from a herd with 300 horses, experienced diarrhea with variable characteristics and intensities, weight loss, hyperemic mucous membranes and dehydration. In foals 3 to 6 months of age, hypoproteinemia associated with submandibular edema were also common. Intestinal fragments of a 7-month-old foal were sent to an animal disease laboratory for diagnosis. The observed macroscopic lesions were hyperemic serosa, thickening of the intestinal wall with a corrugation, thickening of the mucosa folds and reduction of intestinal lumen. Histological analysis of the small and large intestine revealed enterocyte hyperplasia of the crypts associated with diffuse marked decrease in the number of goblet cells and positive L. intracellularis antigen labeling by immunohistochemistry. Three out of 11 animals of the same property were seropositive for L. intracellularis, demonstrating the circulation of the agent throughout the farm, but none were PCR positive in fecal samples. Based on clinical signs and pathological findings, the diagnosis of equine proliferative enteropathy was confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Equine infectious anemia (EIA) is a transmissible and incurable disease caused by a lentivirus, the equine infectious anemia virus (EIAV). There are no reports in the literature of this infection in Equidae on Marajo Island. The objective of this study was to diagnose the disease in the municipalities of Cachoeira do Arari, Salvaterra, Santa Cruz do Arari and Soure, on Marajó Island, state of Pará, Brazil. For serological survey samples were collected from 294 horses, over 5-month-old, males and females of puruca and marajoara breeds and from some half-breeds, which were tested by immunodiffusion in Agar gel (AGID). A prevalence of 46.26% (136/294) positive cases was found. EIA is considered endemic in the municipalities studied, due to the ecology of the region with a high numbered population of bloodsucking insect vectors and the absence of official measures for the control of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of 10 equine herpesvirus 1 (EHV-1) strains isolated in Argentina from 1979 to 1991, and a Japanese HH1 reference strain were compared by restriction endonuclease analysis. Two restriction enzymes, BamHI and BglII, were used and analysis of the electropherotypes did not show significant differences among isolates obtained from horses with different clinical signs. This suggests that the EHV-1 isolates studied, which circulated in Argentina for more than 10 years, belong to a single genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different from most mammalian species, the optic nerve of the rabbit eye is initially formed inside the retina where myelination of the axons of the ganglion cells starts and vascularization occurs. Astrocytes are confined to these regions. The aforementioned nerve fibers known as medullated nerve fibers form two bundles that may be identified with the naked eye. The blood vessels run on the inner surface of these nerve fiber bundles (epivascularization) and, accordingly, the accompanying astrocytes lie mostly facing the vitreous body from which they are separated only by the inner limiting membrane of the retina. The arrangement of the astrocytes around blood vessels leads to the formation of structures known as glial tufts. Fragments (N = 3) or whole pieces (N = 3) of the medullated nerve fiber region of three-month-old male rabbits (Orictolagus cuniculus) were fixed in glutaraldehyde followed by osmium tetroxide, and their thin sections were examined with a transmission electron microscope. Randomly located discontinuities (up to a few micrometers long) of the basement membrane of the inner limiting membrane of the retina were observed in the glial tufts. As a consequence, a direct contact between the astrocyte plasma membrane and vitreous elements was demonstrated, making possible functional interactions such as macromolecular exchanges between this glial cell type and the components of the vitreous body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the association of eye color with the dominant-subordinate relationship in the fish Nile tilapia, Oreochromis niloticus. Eye color pattern was also examined in relation to the intensity of attacks. We paired 20 size-matched fish (intruder: 73.69 ± 11.49 g; resident: 75.42 ± 8.83 g) and evaluated eye color and fights. These fish were isolated in individual aquaria for 10 days and then their eye color was measured 5 min before pairing (basal values). Twenty minutes after pairing, eye color and fights were quantified for 10 min. Clear establishment of social hierarchy was observed in 7 of 10 pairs of fish. Number of attacks ranged from 1 to 168 among pairs. The quartile was calculated for these data and the pairs were then divided into two classes: low-attack (1 to 111 attacks - 2 lower quartiles) or high-attack (112 to 168 attacks - 2 higher quartiles). Dominance decreased the eye-darkening patterns of the fish after pairing, while subordinance increased darkening compared to dominance. Subordinate fish in low-attack confrontations presented a darker eye compared to dominant fish and to the basal condition. We also observed a paler eye pattern in dominants that shared low-attack interactions after pairing compared to the subordinates and within the group. However, we found no differences in the darkening pattern between dominants and subordinates from the high-attack groups. We conclude that eye color is associated with social rank in this species. Moreover, the association between eye color and social rank in the low-attack pairs may function to reduce aggression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsoventral axis of the eye is determined prior to optic cup invagination. A variety of signaling pathways have been implicated in the maintenance of the optic dorsoventral axis, including, but not limited to, bone morphogenetic protein 4, Sonic Hedgehog and retinoic acid. Here, we investigated the possible contribution of Wnt ligands to the establishment or maintenance of the optic axis by analyzing their expression pattern during early chick optic development. We performed in situ hybridization of Wnt-1, Wnt-3a, Wnt-4, and Wnt-5a during the optic vesicle, early optic cup and established optic cup stages and focused our analysis on the optic region. Our data showed that Wnt-5a, but none of the others, is expressed in the dorsal region of the eye starting from the Hamburger and Hamilton stage 14 (HH14). These results are supported by cryosections of the labeled optic region, which further reveal that Wnt-5a is expressed only in the dorsal retinal pigmented epithelium. Thus, we propose that Wnt-5a is a marker for dorsal retinal pigmented epithelium in chick embryos from HH14 to HH19.