54 resultados para ENDOTHELIN-1-INDUCED FEVER
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.
Resumo:
Dengue virus (DENV) and parvovirus B19 (B19V) infections are acute exanthematic febrile illnesses that are not easily differentiated on clinical grounds and affect the paediatric population. Patients with these acute exanthematic diseases were studied. Fever was more frequent in DENV than in B19V-infected patients. Arthritis/arthralgias with DENV infection were shown to be significantly more frequent in adults than in children. The circulating levels of interleukin (IL)-1 receptor antagonist (Ra), CXCL10/inducible protein-10 (IP-10), CCL4/macrophage inflammatory protein-1 beta and CCL2/monocyte chemotactic protein-1 (MCP-1) were determined by multiplex immunoassay in serum samples obtained from B19V (37) and DENV-infected (36) patients and from healthy individuals (7). Forward stepwise logistic regression analysis revealed that circulating CXCL10/IP-10 tends to be associated with DENV infection and that IL-1Ra was significantly associated with DENV infection. Similar analysis showed that circulating CCL2/MCP-1 tends to be associated with B19V infection. In dengue fever, increased circulating IL-1Ra may exert antipyretic actions in an effort to counteract the already increased concentrations of IL-1β, while CXCL10/IP-10 was confirmed as a strong pro-inflammatory marker. Recruitment of monocytes/macrophages and upregulation of the humoral immune response by CCL2/MCP-1 by B19V may be involved in the persistence of the infection. Children with B19V or DENV infections had levels of these cytokines similar to those of adult patients.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
An indirect enzyme linked immunoassay (ELISA-I) was developed and standardized for the serological diagnosis of classical swine fever (CSF). For the comparison, nine hundred and thirty-seven swine serum samples were tested by serum neutralization followed by immunoperoxidase staining (NPLA), considered as the standard. Of these, 223 were positive and 714 negative for neutralizing antibodies to classical swine fever virus (CSFV). In relation to the NPLA, the ELISA-I presented a 98.2% sensitivity; 92.86% specificity, 81.11% positive predictive value, 99.4% negative predictive value and a 94.1% precision. Statistical analysis showed a very strong correlation (r=0,94) between both tests. When compared to a commercially available ELISA kit, the performance of both, in relation to the NPLA, was similar. It was concluded that the ELISA-I is suitable for large scale screening of antibodies to classical swine fever virus, although it does not distinguish antibodies to classical swine fever virus from those induced by other pestiviruses.
Resumo:
Molecular findings that confirmed the participation of ovine herpesvirus 2 (OVH-2) in the lesions that were consistent with those observed in malignant catarrhal fever of cattle are described. Three mixed-breed cattle from Rio Grande do Norte state demonstrated clinical manifestations that included mucopurulent nasal discharge, corneal opacity and motor incoordination. Routine necropsy examination demonstrated ulcerations and hemorrhage of the oral cavity, corneal opacity, and lymph node enlargement. Significant histopathological findings included widespread necrotizing vasculitis, non-suppurative meningoencephalitis, lymphocytic interstitial nephritis and hepatitis, and thrombosis. PCR assay performed on DNA extracted from kidney and mesenteric lymph node of one animal amplified a product of 423 base pairs corresponding to a target sequence within the ovine herpesvirus 2 (OVH-2) tegument protein gene. Direct sequencing of the PCR products, from extracted DNA of the kidney and mesenteric lymph node of one cow, amplified the partial nucleotide sequences (423 base pairs) of OVH-2 tegument protein gene. Blast analysis confirmed that these sequences have 98-100% identity with similar OVH-2 sequences deposited in GenBank. Phylogenetic analyses, based on the deduced amino acid sequences, demonstrated that the strain of OVH-2 circulating in ruminants from the Brazilian states of Rio Grande do Norte and Minas Gerais are similar to that identified in other geographical locations. These findings confirmed the active participation of OVH-2 in the classical manifestations of sheep associated malignant catarrhal fever.
Resumo:
Cholinergic as well as monoaminergic neurotransmission seems to be involved in the etiology of affective disorders. Chronic treatment with imipramine, a classical antidepressant drug, induces adaptive changes in monoaminergic neurotransmission. In order to identify possible changes in cholinergic neurotransmission we measured total, membrane-bound and soluble acetylcholinesterase (Achase) activity in several rat brain regions after chronic imipramine treatment. Changes in Achase activity would indicate alterations in acetylcholine (Ach) availability to bind to its receptors in the synaptic cleft. Male rats were treated with imipramine (20 mg/kg, ip) for 21 days, once a day. Twenty-four hours after the last dose the rats were sacrificed and homogenates from several brain regions were prepared. Membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) after chronic imipramine treatment was significantly decreased in the hippocampus (control = 188.8 ± 19.4, imipramine = 154.4 ± 7.5, P<0.005) and striatum (control = 850.9 ± 59.6, imipramine = 742.5 ± 34.7, P<0.005). A small increase in total Achase activity was observed in the medulla oblongata and pons. No changes in enzyme activity were detected in the thalamus or total cerebral cortex. Since the levels of Achase seem to be enhanced through the interaction between Ach and its receptors, a decrease in Achase activity may indicate decreased Ach release by the nerve endings. Therefore, our data indicate that cholinergic neurotransmission is decreased after chronic imipramine treatment which is consistent with the idea of an interaction between monoaminergic and cholinergic neurotransmission in the antidepressant effect of imipramine
Resumo:
TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.
Resumo:
The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response.
Resumo:
The endothelins (ET-1, 2 and 3) constitute a family of 21 amino acid peptides with potent biological activities. ET-1 is one of the most potent endogenous vasoconstrictors so far identified and its increased concentration in plasma appears to be closely related to the pathogenesis of arterial hypertension as well as to obstructive sleep apnea (OSA). OSA patients exhibit repetitive episodes of apnea and hypopnea that result in hypoxia and consecutive arousals. These patients are chronically sleep deprived, which may aggravate the hypertensive features, since literature data show that sleep deprivation results in hypertension both in humans and in animals. Based on the reported relationship between ET-1, hypertension and sleep deprivation consequences, the purpose of the present study was to determine plasma ET concentrations in paradoxical sleep-deprived animals. Male Wistar rats, 3 to 4 months old (N = 10 per group), were deprived of sleep for 24 and 96 h by the platform technique and plasma ET-1/2 was measured by radioimmunoassay. Analysis of plasma revealed that 96 h of sleep deprivation induced a significant increase in ET-1/2 release (6.58 fmol/ml) compared to control (5.07 fmol/ml). These data show that sleep deprivation altered plasma ET-1/2 concentrations, suggesting that such an increase may participate in the genesis of arterial hypertension and cardiorespiratory changes observed after sleep deprivation.
Resumo:
We determined the effect of long-term aerobic swimming training regimens of different intensities on colonic carcinogenesis in rats. Male Wistar rats (11 weeks old) were given 4 subcutaneous injections (40 mg/kg body weight each) of 1,2-dimethyl-hydrazine (DMH, dissolved in 0.9% NaCl containing 1.5% EDTA, pH 6.5), at 3-day intervals and divided into three exercise groups that swam with 0% body weight (EG1, N = 11), 2% body weight (EG2, N = 11), and 4% body weight of load (EG3, N = 10), 20 min/day, 5 days/week for 35 weeks, and one sedentary control group (CG, N = 10). At sacrifice, the colon was removed and counted for tumors and aberrant crypt foci. Tumor size was measured and intra-abdominal fat was weighed. The mean number of aberrant crypt foci was reduced only for EG2 compared to CG (26.21 ± 2.99 vs 36.40 ± 1.53 crypts; P < 0.05). Tumor incidence was not significantly different among groups (CG: 90%; EG1: 72.7%; EG2: 90%; EG3: 80%). Swimming training did not affect either tumor multiplicity (CG: 2.30 ± 0.58; EG1: 2.09 ± 0.44; EG2: 1.27 ± 0.19; EG3: 1.50 ± 0.48 tumors) or size (CG: 1.78 ± 0.24; EG1: 1.81 ± 0.14; EG2: 1.55 ± 0.21; EG3: 2.17 ± 0.22 cm³). Intra-abdominal fat was not significantly different among groups (CG: 10.54 ± 2.73; EG1: 6.12 ± 1.15; EG2: 7.85 ± 1.24; EG3: 5.11 ± 0.74 g). Aerobic swimming training with 2% body weight of load protected against the DMH-induced preneoplastic colon lesions, but not against tumor development in the rat.
Resumo:
Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT) initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C) or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8) and 2-month (N = 8) survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively). When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8) and 6-month (N = 9) survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively). These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.
Resumo:
We determined the effect of fish oil (FO) ingestion on colonic carcinogenesis in rats. Male Wistar rats received 4 subcutaneous injections (40 mg/kg body weight each) of 1,2-dimethylhydrazine (DMH) at 3-day intervals and were fed a diet containing 18% by weight FO (N = 10) or soybean oil (SO, N = 10) for 36 weeks. At sacrifice, the colon was removed, aberrant crypt foci were counted and the fatty acid profile was determined. Intestinal tumors were removed and classified as adenoma or carcinoma. Liver and feces were collected and analyzed for fatty acid profile. FO reduced the mean (± SEM) number of aberrant crypt foci compared to SO (113.55 ± 6.97 vs 214.60 ± 18.61; P < 0.05) and the incidence of adenoma (FO: 20% vs SO: 100%), but carcinoma occurred equally in FO and SO rats (2 animals per group). The polyunsaturated fatty acid (PUFA) profile of the colon was affected by diet (P < 0.05): total ω-3 (FO: 8.18 ± 0.97 vs SO: 1.71 ± 0.54%) and total ω-6 (FO: 3.83 ± 0.59 vs SO: 10.43 ± 1.28%). The same occurred in the liver (P < 0.05): total ω-3 (FO: 34.41 ± 2.6 vs SO: 6.46 ± 0.59%) and total ω-6 (FO: 8.73 ± 1.37 vs SO: 42.12 ± 2.33%). The PUFA profile of the feces and liver polyamine levels did not differ between groups (P > 0.05). In conclusion, our findings indicate that chronic FO ingestion protected against the DMH-induced preneoplastic colon lesions and adenoma development, but not against carcinoma in rats.
Resumo:
The efficacy of endothelin receptor antagonists in protecting against myocardial ischemia/reperfusion (I/R) injury is controversial, and the mechanisms remain unclear. The aim of this study was to investigate the effects of CPU0123, a novel endothelin type A and type B receptor antagonist, on myocardial I/R injury and to explore the mechanisms involved. Male Sprague-Dawley rats weighing 200-250 g were randomized to three groups (6-7 per group): group 1, Sham; group 2, I/R + vehicle. Rats were subjected to in vivo myocardial I/R injury by ligation of the left anterior descending coronary artery and 0.5% sodium carboxymethyl cellulose (1 mL/kg) was injected intraperitoneally immediately prior to coronary occlusion. Group 3, I/R + CPU0213. Rats were subjected to identical surgical procedures and CPU0213 (30 mg/kg) was injected intraperitoneally immediately prior to coronary occlusion. Infarct size, cardiac function and biochemical changes were measured. CPU0213 pretreatment reduced infarct size as a percentage of the ischemic area by 44.5% (I/R + vehicle: 61.3 ± 3.2 vs I/R + CPU0213: 34.0 ± 5.5%, P < 0.05) and improved ejection fraction by 17.2% (I/R + vehicle: 58.4 ± 2.8 vs I/R + CPU0213: 68.5 ± 2.2%, P < 0.05) compared to vehicle-treated animals. This protection was associated with inhibition of myocardial inflammation and oxidative stress. Moreover, reduction in Akt (protein kinase B) and endothelial nitric oxide synthase (eNOS) phosphorylation induced by myocardial I/R injury was limited by CPU0213 (P < 0.05). These data suggest that CPU0123, a non-selective antagonist, has protective effects against myocardial I/R injury in rats, which may be related to the Akt/eNOS pathway.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.