36 resultados para Drilling Mud Invasion
Resumo:
Invasive bacteria can induce their own uptake and specify their intracellular localization; hence it is commonly assumed that proximate modulation of host cell transcription is not required for infection. However, bacteria can also modulate, directly or indirectly, the transcription of many host cell genes, whose role in the infection may be difficult to determine by global gene expression. Is the host cell nucleus proximately required for intracellular infection and, if so, for which pathogens and at what stages of infection? Enucleated cells were previously infected with Toxoplasma gondii, Chlamydia psittaci, C. trachomatis, or Rickettsia prowazekii. We enucleated L929 mouse fibroblasts by centrifugation in the presence of cytochalasin B, and compared the infection with Shigella flexneri M90T 5a of nucleated and enucleated cells. Percent infection and bacterial loads were estimated with a gentamicin suppression assay in cultures fixed and stained at different times after infection. Enucleation reduced by about half the percent of infected cells, a finding that may reflect the reduced endocytic ability of L929 cytoplasts. However, average numbers of bacteria and frequency distributions of bacterial numbers per cell at different times were similar in enucleated and nucleated cells. Bacteria with actin-rich tails were detected in both cytoplasts and nucleated cells. Lastly, cytoplasts were similarly infected 2 and 24 h after enucleation, suggesting that short-lived mRNAs were not involved in the infection. Productive S. flexneri infection could thus take place in cells unable to modulate gene transcription, RNA processing, or nucleus-dependent signaling cascades.
Resumo:
REGγ is a proteasome activator that facilitates the degradation of small peptides. Abnormally high expression of REGγ has been observed in thyroid carcinomas. The purpose of the present study was to explore the role of REGγ in poorly differentiated thyroid carcinoma (PDTC). For this purpose, small interfering RNA (siRNA) was introduced to down-regulate the level of REGγ in the PDTC cell line SW579. Down-regulation of REGγ at the mRNA and protein levels was confirmed by RT-PCR and Western blot analyses. FACS analysis revealed cell cycle arrest at the G1/S transition, the MTT assay showed inhibition of cell proliferation, and the Transwell assay showed restricted cell invasion. Furthermore, the expression of the p21 protein was increased, the expression of proliferating cell nuclear antigen (PCNA) protein decreased, and the expression of the p27 protein was unchanged as shown by Western blot analyses. REGγ plays a critical role in the cell cycle, proliferation and invasion of SW579 cells. The alteration of p21 and PCNA proteins related to the down-regulation of REGγ suggests that p21 and PCNA participate in the process of REGγ regulation of cell cycle progression and cell proliferation. Thus, targeting REGγ has a therapeutic potential in the management of PDTC patients.
Resumo:
To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitroand the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.
Resumo:
Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.
Resumo:
Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.
Resumo:
Reversion-inducing cysteine-rich protein with kazal motifs (RECK), a novel tumor suppressor gene that negatively regulates matrix metalloproteinases (MMPs), is expressed in various normal human tissues but downregulated in several types of human tumors. The molecular mechanism for this downregulation and its biological significance in salivary adenoid cystic carcinoma (SACC) are unclear. In the present study, we investigated the effects of a DNA methyltransferase (DNMT) inhibitor, 5-aza-2′deoxycytidine (5-aza-dC), on the methylation status of the RECK gene and tumor invasion in SACC cell lines. Methylation-specific PCR (MSP), Western blot analysis, and quantitative real-time PCR were used to investigate the methylation status of the RECK gene and expression of RECK mRNA and protein in SACC cell lines. The invasive ability of SACC cells was examined by the Transwell migration assay. Promoter methylation was only found in the ACC-M cell line. Treatment of ACC-M cells with 5-aza-dC partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression of mRNA and protein, and 5-aza-dC significantly suppressed ACC-M cell invasive ability. Our findings showed that 5-aza-dC inhibited cancer cell invasion through the reversal of RECKgene hypermethylation, which might be a promising chemotherapy approach in SACC treatment.