48 resultados para Distributed Material Flow Control
Portable flow board for storage of fruits and vegetables in mini-chambers with controlled atmosphere
Resumo:
ABSTRACT A portable flow board system was developed in the present study with the aim to facilitate lab-scale experiments of controlled atmosphere (CA) with fruits and vegetables. This sturdy flow board combines ease fabrication, low cost and gas economy. Its functionality is provided by manifolds and gas mixers. Each gaseous component is supplied by a gas cylinder through a differential valve of adjusted pressure control, generally at 6 kPa, and forced through 13 standardized restrictors coupled to each manifold output. Controlled atmospheres are then formed with one, two or three gases in 13 gas mixers affixed to the flow board base, which are further conducted through flexible tubes to storage mini-chambers that can also be used to study metabolic consumption and production of gaseous components. The restrictors used in the flow gaseous components were manufactured from microhematocrit test-type capillary glass tubes following the hot forming method under continuous air flow. The portable flow board showed to be low cost and simple post-harvest equipment that allows preparing controlled atmospheres in open systems with stable composition and flow, in a manner similar to traditional flow boards with control of gas escape by barostats.
Resumo:
ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.
Resumo:
Pulse Response Based Control (PRBC) is a recently developed minimum time control method for flexible structures. The flexible behavior of the structure is represented through a set of discrete time sequences, which are the responses of the structure due to rectangular force pulses. The rectangular force pulses are given by the actuators that control the structure. The set of pulse responses, desired outputs, and force bounds form a numerical optimization problem. The solution of the optimization problem is a minimum time piecewise constant control sequence for driving the system to a desired final state. The method was developed for driving positive semi-definite systems. In case the system is positive definite, some final states of the system may not be reachable. Necessary conditions for reachability of the final states are derived for systems with a finite number of degrees of freedom. Numerical results are presented that confirm the derived analytical conditions. Numerical simulations of maneuvers of distributed parameter systems have shown a relationship between the error in the estimated minimum control time and sampling interval
Resumo:
This work describes a lumped parameter mathematical model for the prediction of transients in an aerodynamic circuit of a transonic wind tunnel. Control actions to properly handle those perturbations are also assessed. The tunnel circuit technology is up to date and incorporates a novel feature: high-enthalpy air injection to extend the tunnels Reynolds number capability. The model solves the equations of continuity, energy and momentum and defines density, internal energy and mass flow as the basic parameters in the aerodynamic study as well as Mach number, stagnation pressure and stagnation temperature, all referred to test section conditions, as the main control variables. The tunnel circuit response to control actions and the stability of the flow are numerically investigated. Initially, for validation purposes, the code was applied to the AWT ("Altitude Wind Tunnel" of NASA-Lewis). In the sequel, the Brazilian transonic wind tunnel was investigated, with all the main control systems modeled, including injection.
Resumo:
Plot-scale overland flow experiments were conducted to evaluate the efficiency of streamside management zones (SMZs) in retaining herbicides in runoff generated from silvicultural activities. Herbicide retention was evaluated for five different slopes (2, 5, 10, 15, and 20%), two cover conditions (undisturbed O horizon and raked surface), and two periods under contrasting soil moisture conditions (summer dry and winter wet season) and correlated to O horizon and site conditions. Picloram (highly soluble in water) and atrazine (moderately sorbed into soil particles) at concentrations in the range of 55 and 35 µg L-1 and kaolin clay (approximately 5 g L-1) were mixed with 13.000 liters of water and dispersed over the top of 5 x 10 m forested plots. Surface flow was collected 2, 4, 6, and 10 m below the disperser to evaluate the changes in concentration as it moved through the O horizon and surface soil horizon-mixing zone. Results showed that, on average, a 10 m long forested SMZ removed around 25% of the initial concentration of atrazine and was generally ineffective in reducing the more soluble picloram. Retention of picloram was only 6% of the applied quantity. Percentages of mass reduction by infiltration were 36% for atrazine and 20% for picloram. Stronger relationships existed between O horizon depth and atrazine retention than in any other measured variable, suggesting that better solid-solution contact associated with flow through deeper O horizons is more important than either velocity or soil moisture as a determinant of sorption.
Resumo:
The objective of this study was to evaluate the effect of the ethanolic extract of Serjania lethalis leaves and stems on the diaspore germination and seedling growth of wild poinsettia (Euphorbia heterophylla) and barnyardgrass (Echinochloa crus-galli). The crude ethanolic extract was prepared from 100 g of dry plant material dissolved in 500 ml of ethanol. The extracts were solubilized in a buffer solution containing dimethyl sulfoxide (DMSO) at concentrations of 10.0, 7.5, 5.0 and 2.5 mg mL-1. The effect of these extracts was compared with herbicide oxyfluorfen in bioassays. The ethanolic extracts of S. lethalis leaves and stems inhibited the germination and seedling growth of barnyardgrass and wild poinsettia in a concentration-dependent manner. The reduction in the root length of E. heterophylla seedlings might be attributed to the reduced elongation of metaxylem cells. The phytotoxicity of the extracts ranged according to the receptor species, and for some variables, the inhibitory effect was similar, and even superior, to that of the commercial herbicide. Thus, S. lethalis extracts might be a promising alternative for sustainable weed management.
Resumo:
We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.
Resumo:
We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
We analyzed the flow-volume curves of 50 patients with complaints of snoring and daytime sleepiness in treatment at the Pneumology Unit of the University Hospital of Brasília. The total group was divided into snorers without obstructive sleep apnea (OSA) (N = 19) and snorers with OSA (N = 31); the patients with OSA were subdivided into two groups according to the apnea/hypopnea index (AHI): AHI<20/h (N = 14) and AHI>20/h (N = 17). The control group (N = 10) consisted of nonsmoking subjects without complaints of snoring, daytime sleepiness or pulmonary diseases. The population studied (control and patients) consisted of males of similar age, height and body mass index (BMI); spirometric data were also similar in the four groups. There was no significative difference in the ratio of forced expiratory and inspiratory flows (FEF50%/FIF50%) in any group: control, 0.89; snorers, 1.11; snorers with OSA (AHI<20/h), 1.42, and snorers with OSA (AHI>20/h), 1.64. The FIF at 50% of vital capacity (FIF50%) of snoring patients with or without OSA was lower than the FIF50% of the control group (P<0.05): snorers 4.30 l/s; snorers with OSA (AHI<20/h) 3.69 l/s; snorers with OSA (AHI>20/h) 3.17 l/s and control group 5.48 l/s. The FIF50% of patients with severe OSA (AHI>20/h) was lower than the FIF50% of snorers without OSA (P<0.05): 3.17 l/s and 4.30 l/s, respectively. We conclude that 1) the FEF50%/FIF50% ratio is not useful for predicting OSA, and 2) FIF50% is decreased in snoring patients with and without OSA, suggesting that these patients have increased upper airway resistance (UAR).
Resumo:
Microcystin is a hepatotoxic peptide which inhibits protein phosphatase types 1 and 2A. The objective of the present study was to evaluate the physiopathologic effects of microcystin-LR in isolated perfused rat kidney. Adult Wistar rats (N = 5) of both sexes (240-280 g) were utilized. Microcystin-LR (1 µg/ml) was perfused over a period of 120 min, during which samples of urine and perfusate were collected at 10-min intervals to determine the levels of inulin, sodium, potassium and osmolality. We observed a significant increase in urinary flow with a peak effect at 90 min (control (C) = 0.20 ± 0.01 and treated (T) = 0.32 ± 0.01 ml g-1 min-1, P<0.05). At 90 min there was a significant increase in perfusate pressure (C = 129.7 ± 4.81 and T = 175.0 ± 1.15 mmHg) and glomerular filtration rate (C = 0.66 ± 0.07 and T = 1.10 ± 0.04 ml g-1 min-1) and there was a significant reduction in fractional sodium tubular transport at 120 min (C = 78.6 ± 0.98 and T = 73.9 ± 0.95%). Histopathologic analysis of the perfused kidneys showed protein material in the urinary space, suggestive of renal toxicity. These data demonstrate renal vascular, glomerular and urinary effects of microcystin-LR, indicating that microcystin acts directly on the kidney by probable inhibition of protein phosphatases.
Resumo:
This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs). Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.
Resumo:
To inhibit an ongoing flow of thoughts or actions has been largely considered to be a crucial executive function, and the stop-signal paradigm makes inhibitory control measurable. Stop-signal tasks usually combine two concurrent tasks, i.e., manual responses to a primary task (go-task) are occasionally countermanded by a stimulus which signals participants to inhibit their response in that trial (stop-task). Participants are always instructed not to wait for the stop-signal, since waiting strategies cause the response times to be unstable, invalidating the data. The aim of the present study was to experimentally control the strategies of waiting deliberately for the stop-signal in a stop-task by means of an algorithm that measured the variation in the reaction times to go-stimuli on-line, and displayed a warning legend urging participants to be faster when their reaction times were more than two standard deviations of the mean. Thirty-four university students performed a stop-task with go- and stop-stimuli, both of which were delivered in the visual modality and were lateralized within the visual field. The participants were divided into two groups (group A, without the algorithm, vs group B, with the algorithm). Group B exhibited lower variability of reaction times to go-stimuli, whereas no significant between-group differences were found in any of the measures of inhibitory control, showing that the algorithm succeeded in controlling the deliberate waiting strategies. Differences between deliberate and unintentional waiting strategies, and anxiety as a probable factor responsible for individual differences in deliberate waiting behavior, are discussed.
Resumo:
Since neurovascular control is altered in obese subjects, we hypothesized that weight loss by diet (D) or diet plus exercise training (D + ET) would improve neurovascular control during mental stress in obese women. In a study with a dietary reduction of 600 kcal/day with or without exercise training for 4 months, 53 obese women were subdivided in D (N = 22, 33 ± 1 years, BMI 34 ± 1 kg/m²), D + ET (N = 22, 33 ± 1 years, BMI 33 ± 1 kg/m²), and nonadherent (NA, N = 9, 35 ± 2 years, BMI 33 ± 1 kg/m²) groups. Muscle sympathetic nerve activity (MSNA) was measured by microneurography and forearm blood flow by venous occlusion plethysmography. Mental stress was elicited by a 3-min Stroop color word test. Weight loss was similar between D and D + ET groups (87 ± 2 vs 79 ± 2 and 85 ± 2 vs 76 ± 2 kg, respectively, P < 0.05) with a significant reduction in MSNA during mental stress (58 ± 2 vs 50 ± 2, P = 0.0001, and 59 ± 3 vs 50 ± 2 bursts/100 beats, P = 0.0001, respectively), although the magnitude of the response was unchanged. Forearm vascular conductance during mental stress was significantly increased only in D + ET (2.74 ± 0.22 vs 3.52 ± 0.19 units, P = 0.02). Weight loss reduces MSNA during mental stress in obese women. The increase in forearm vascular conductance after weight loss provides convincing evidence for D + ET interventions as a nonpharmacologic therapy of human obesity.
Resumo:
Alterations in salivary parameters may increase the caries risk in diabetic children, but, contradictory data on this issue have been reported. The aims of this study were to compare salivary parameters (flow rate, pH and calcium concentration) between healthy and type 1 diabetes mellitus (T1DM) individuals. The sample consisted of 7- to 18-year-old individuals divided into two groups: 30 subjects with T1DM (group A) and 30 healthy control subjects (group B). Fasting glucose levels were determined. Unstimulated and stimulated saliva was collected. The pH of unstimulated saliva was measured with paper strips and an electrode. Calcium concentrations in stimulated saliva were determined with a selective electrode. Group A individuals had inadequate blood glucose control (HbA1C >9%), with means ± SD unstimulated salivary flow rate of 0.15 ± 0.1 mL/min compared to 0.36 ± 0.2 mL/min for group B (P < 0.01). Stimulated salivary flow rate was similar by both groups and above 2.0 mL/min. Saliva pH was 6.0 ± 0.8 for group A and significantly different from 7.0 ± 0.6 for group B (P < 0.01). Salivary calcium was 14.7 ± 8.1 mg/L for group A and significantly higher than 9.9 ± 6.4 mg/L for group B (P < 0.01). Except for elevated calcium concentrations in saliva, salivary parameters favoring caries such as low saliva pH and unstimulated salivary flow rate were observed in T1DM individuals.