39 resultados para Diffusion Turbulent Flame


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical treatment of rough wall turbulent boundary layers consists in determining the effect the roughness has on the mean velocity profile. This effect is usually described in terms of the roughness function delta U+. The general implication is that different roughness geometries with the same delta U+ will have similar turbulence characteristics, at least at a sufficient distance from the roughness elements. Measurements over two different surface geometries (a mesh roughness and spanwise circular rods regularly spaced in the streamwise direction) with nominally the same delta U+ indicate significant differences in the Reynolds stresses, especially those involving the wall-normal velocity fluctuation, over the outer region. The differences are such that the Reynolds stress anisotropy is smaller over the mesh roughness than the rod roughness. The Reynolds stress anisotropy is largest for a smooth wall. The small-scale anisotropy and interniittency exhibit much smaller differences when the Taylor microscale Reynolds number and the Kolmogorov-normalized mean shear are nominally the same. There is nonetheless evidence that the small-scale structure over the three-dimensional mesh roughness conforms more closely with isotropy than that over the rod-roughened and smooth walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work considers the modeling of turbulent flow in radial diffuser with axial feeding. Due to its claimed capability to predict flow including features such as separation, curvature and adverse pressure gradient, the RNG k-epsilon model of Orzag et al. (1993) is applied in the present analysis. The governing equations are numerically solved using the finite volume methodology. Experiments were conducted to assess the turbulence model. Numerical results of pressure distribution on the front disk surface for different flow conditions when compared to the experimental data indicated that the RNG k-epsilon model is adequate to predict this class of flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parallel pseudo-spectral method for the simulation in distributed memory computers of the shallow-water equations in primitive form was developed and used on the study of turbulent shallow-waters LES models for orographic subgrid-scale perturbations. The main characteristics of the code are: momentum equations integrated in time using an accurate pseudo-spectral technique; Eulerian treatment of advective terms; and parallelization of the code based on a domain decomposition technique. The parallel pseudo-spectral code is efficient on various architectures. It gives high performance onvector computers and good speedup on distributed memory systems. The code is being used for the study of the interaction mechanisms in shallow-water ows with regular as well as random orography with a prescribed spectrum of elevations. Simulations show the evolution of small scale vortical motions from the interaction of the large scale flow and the small-scale orographic perturbations. These interactions transfer energy from the large-scale motions to the small (usually unresolved) scales. The possibility of including the parametrization of this effects in turbulent LES subgrid-stress models for the shallow-water equations is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory for the description of turbulent boundary layer flows over surfaces with a sudden change in roughness is considered. The theory resorts to the concept of displacement in origin to specify a wall function boundary condition for a kappa-epsilon model. An approximate algebraic expression for the displacement in origin is obtained from the experimental data by using the chart method of Perry and Joubert(J.F.M., vol. 17, pp. 193-122, 1963). This expression is subsequently included in the near wall logarithmic velocity profile, which is then adopted as a boundary condition for a kappa-epsilon modelling of the external flow. The results are compared with the lower atmospheric observations made by Bradley(Q. J. Roy. Meteo. Soc., vol. 94, pp. 361-379, 1968) as well as with velocity profiles extracted from a set of wind tunnel experiments carried out by Avelino et al.( 7th ENCIT, 1998). The measurements are found to be in good agreement with the theoretical computations. The skin-friction coefficient was calculated according to the chart method of Perry and Joubert(J.F.M., vol. 17, pp. 193-122, 1963) and to a balance of the integral momentum equation. In particular, the growth of the internal boundary layer thickness obtained from the numerical simulation is compared with predictions of the experimental data calculated by two methods, the "knee" point method and the "merge" point method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed to determine average heat transfer coefficients and friction factors for turbulent flow through annular ducts with pin fins. The measurements were carried out by means of a double-pipe heat exchanger. The total number of pins attached to the inner wall of the annular region was 560. The working fluids were air, flowing in the annular channel, and water through the inner circular tube. The average heat transfer coefficients of the pinned air-side were obtained from the experimental determination of the overall heat transfer coefficients of the heat exchanger and from the knowledge of the average heat transfer coefficients of the circular pipe (water-side), which could be found in the pertinent literature. To attain fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner circular duct of the heat exchanger and the pin fins were made of brass. Due to the high thermal conductivity of the brass, the small tube thickness and water temperature variation, the surface of the internal tube was practically isothermal. The external tube was made of an industrial plastic which was insulated from the environment by means of a glass wool batt. In this manner, the outer surface of the annular channel can be considered adiabatic. The results are presented in dimensionless forms, in terms of average Nusselt numbers and friction factors as functions of the flow Reynolds number, ranging from 13,000 to 80,000. The pin fin efficiency, which depends on the heat transfer coefficient, is also determined as a function of dimensionless parameters. A comparison of the present results with those for smooth sections (without pins) is also presented. The purpose of such a comparison is to study the influence of the presence of the pins on the pressure drop and heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemolytic profile of an artificial device chronically implanted in the cardiovascular system may represent the difference between the success and failure in its long-term performance. Last decades have witnessed efforts on the development of methods capable of predicting red blood cell damage in artificial organs. However, all of them have had limited success to predict hemolysis. The primary cause of this problem is that such models do not take into consideration structures of turbulent flow. The present paper demonstrates that microscopic measurable occurrences of the turbulent flow may be linked to red blood cell trauma. This study suggests that if the smallest turbulent eddies dimension is under 10 m m hemolysis is not dependent on the exposure time and the red blood cells damage depends only on the dissipation of the turbulent energy in the erythrocyte membrane. The analysis reported here opens the possibility of mapping the flow field in artificial assist devices based on the smallest eddy length scales. This is a promising new trend and should be considered in the designing requirements of the next generations of artificial organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.