96 resultados para Different temperatures
Resumo:
The identification of the chemical compounds of the essential oil was performed with a gas chromatograph coupled to a mass spectrometer. The oil was left in the presence and absence of light and submitted to different temperatures to evaluate its stability. The yields of the major compounds were evaluated every fifteen days. Citral and myrcene, the major compounds of the essential oil, were degraded over time in both the presence and absence of light, but temperature only influenced the degradation of myrcene.
Resumo:
This article proposes an experimental procedure to determine the enthalpy (and entropy) of vaporization of organic liquid compounds, by the Smith-Menzies (isoteniscope) method. The values of vapor pressure at different temperatures were obtained and ΔvH (and ΔvS) were graphically determined, using the Clausius-Clapeyron equation. The results for diethyl-ether, propanone, ethanol and n-hexane are in very good agreement with those from literature. A historical and thermodynamic discussion on equations that correlates vapor pressures and temperature precedes the experimental proposition.
Resumo:
Poly (3-hydroxybutyrate) (P(3HB)) is a biopolymer, completely biodegradable, which has similar properties to fuel-based polymers. However to make it economically competitive it is necessary the study of cheap sources of substrate. The influence of hydrolyzed rice starch supplemented with soybean oil at different temperatures (30, 35 and 40 °C) was studied in the production of P(3HB) by C. necator. The percentage of P(3HB) produced in the cultures at 30, 35 °C was 30, 39% and 35, 43% without and with supplementation of oil, respectively. The culture at 40 °C showed no production phase due to a possible oxygen limitation. These results demonstrate that hydrolyzed rice starch supplemented with soybean oil increases the yield of P(3HB) and temperature of 35 ºC is the most favorable for biopolymer production.
Resumo:
Titania-supported Ir catalysts were used in the hydrogenation of furfural. Reactions were carried out in a stirred batch type reactor at 0.62MPa and 363K using a 0.10M solution of furfural in a 1:1 mixture n-heptane -ethanol as solvent. Catalysts containing 2 wt% of Ir were reduced in H2 flow at different temperatures in the range 473-773K. The catalysts were characterized by H2 chemisorption, TEM, TPR, TPD of NH3 and XPS. Conversion of furfural is higher at lower reduction temperatures, but leads to byproducts whereas reduction at higher temperatures shows selectivity to furfuryl alcohol close to 100%.
Resumo:
Samples of shells of oysters and mussels from sea farm around the Santa Catarina Island in south Brazil were collected and analyzed by DRX, FRX, SEM, CHN-S, FTIR, TG, AAS/Flame and AAS /GF. The results showed that the crystalline structure of mussel's shells is mainly formed by aragonite and the oyster's shells by calcite. The calcium percentage in both shells species was in the range of 33 to 35% and also 850 and 1200 mg/kg of strontium was detected in the shells of oysters and mussels, respectively. The content of organic matter was larger in the mussel's shells and the thermal degradation of both shells species occurred by three events at different temperatures from 250 to 830 ºC.
Resumo:
The aim of this work is to propose a methodology to evaluate the evolution of the pore blockage of limestone during the sulfation reaction. The experiments were performed for a national limestone (dolomite) with average particle size of 545 μm in interrupted sulfation tests were conducted at seven different times and at three different temperatures of the process. The empirical data were obtained from porosimetry tests to establish BET surface area, volume and average size of pore and distribution of pore sizes of the sulfated samples. Thermogravimetric tests were performed to evaluate the preparation methodology of the samples used in the porosimetry tests.
Resumo:
This paper evaluates the adsorption capacity of zirconocene-based silica materials in the pre-concentration of antimicrobians (tetracycline, sulfamethoxazole and trimethoprim) in aqueous medium. These materials were prepared by grafting the zirconocene onto silicas pre-treated at different temperatures. The retention capacity of these materials was evaluated by off line SPE and HPLC-UV and the proposed methodology was validated in ultrapure, tap and river water. The recovery for tetracycline was 72% (in the solid phase A) and, for sulfamethoxazole and trimethoprim was 68 and 95% in the commercial C18, respectively. The target antimicrobians were not detected in the Arroio Dilúvio (Porto Alegre - RS).
Resumo:
This work compared activated carbon, activated earth, diatomaceous earth, chitin and chitosan to removal acid blue 9, food yellow 3 and FD&C yellow nº 5 dyes from aqueous solutions with different pH values (2-10). In the best process condition for each dye, equilibrium studies were carried out at different temperatures (from 298 to 328 K) and Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models were fitted with experimental data. In addition, entropy change, Gibbs free energy change and enthalpy change were obtained in order to verify the thermodynamic adsorption behavior.
Resumo:
SiO2-TiO2 materials prepared by sol-gel method were evaluated in the photocatalytic degradation of diuron. The materials were prepared with and without surfactant cetyltrimethylammonium chloride at different temperatures (25, 50 and 100 ºC). The samples were characterized by N2 adsorption-desorption measurements, scanning electron microscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy and infrared diffuse reflectance spectroscopy. The results showed that the materials synthesized with the surfactant had higher surface areas and band-gap values similar to anatase. All materials were more active than the commercial catalyst P-25 and better performance was achieved using the surfactant in the material synthesis.
Resumo:
In this work, ¹H Nuclear Magnetic Resonance (¹H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym® Yieldmash and Ultrazym® AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes.
Resumo:
Low-rank coals are an important source of humic acids, which are important in retention processes of water and nutrients in plants. In this study coal samples of Montelibano, Colombia, were oxidized with air at different temperatures and subsequently with H2O2 and HNO3. The materials were characterized by FTIR, proximate and elemental analysis, and quantification of humic acids. The oxidation process led to an increased content of oxygenated groups and humic acids in the carbonaceous structure. The solid oxidized with air at 200 ºC for 12 h and re-oxidized with HNO3 for 12 h showed the highest percentage of humic acids (85.3%).
Resumo:
Cyanate ion stability was studied in aqueous/ethanolic solutions, pH = 4.5 (CH3COOH/NaCH3COO), at different temperatures. Following the decay [(OCN)-] versus time, in the presence of excess C2H5OH, the rate constant for this reaction (k1) was calculated as (2.5 ± 0.3) x 10-4 s-1 at 25 ºC, for 0 < [C2H5OH] < 13.7 x 10-1 mol L-1. For [C2H5OH] > 2.0 mol L-1 a decrease in the numerical value of k1 was observed, reaching 5.2 x 10-5 s-1 when [CH3CH2OH] = 13.7 mol L-1. Variations in the kinetic parameter values ΔH1, ΔS1 and ΔG1 for the cyanate ion decay reaction were observed for solutions at different ethanol concentrations.
Resumo:
In this study, electric arc furnace dust (EAFD) was thermally modified at different temperatures under H2 flow or charcoal in order to obtain reduced iron phases (Fe3O4, FeO and Fe0). The formation of these phases was confirmed by powder X-ray diffraction. The tests performed for reducing Cr (VI) using resultant materials obtained after thermal treatment of the EAFD showed excellent results, with PAE600H (EAFD reduced at 600 ºC under H2 flow) decreasing around 100% of the Cr (VI) in only 10 minutes of reaction. These results indicate the possibility of adding value to the residue, obtaining materials that offer great potential for environmental applications.
Resumo:
The environmental impact of plastic waste has attracted worldwide attention. Amid the current context of increasing concern for the environment, biodegradable plastics have been widely studied as a replacement for synthetic plastics. Poly(3-hydroxybutyrate) (P(3HB)) is a biopolymer stored as an intracellular energy and reserve source in many microorganisms. Because it is an intracellular product, P(3HB) must be extracted from the cells at the end of the culture. The purpose of this study was to investigate the effect of extraction time, heating temperature, first standing time (after filtration and extraction), second standing time (after P(3HB) precipitation) and solvent amount, during the process of extracting P(3HB) from Cupriavidus necator DSM 545, using propylene carbonate as solvent. The extraction kinetic of P(3HB) with propylene carbonate from thermally treated biomass was evaluated at different temperatures. The physical properties of the P(3HB) obtained were also evaluated. In this case, P(3HB) obtained at optimal conditions of recovery (98%) and purity (99%) was used. Results showed that temperature was the most important factor in these responses for the range of values studied (110-150 ºC).
Resumo:
The aim of this study was to develop an effective and economically viable technology for the treatment of vinasse, prior to its disposal in the soil for fertirrigation, aiming this way at reducing the environmental impacts generated by inadequately discarding this effluent. The primary treatment of vinasse by adsorption was evaluated. Adsorbents were prepared from sugar cane bagasse and their efficiency evaluated in relation to the treatment of vinasse. The process of preparation of activated carbon consisted of carbonizing bagasse at different temperatures followed by chemical activation with NaOH. The carbon samples obtained by solely carbonizing sugar cane bagasse were more efficient for removing turbidity of vinasse than samples activated with NaOH. The sample carbonized at 800 °C was the most efficient for removing turbidity of wastewater (83%). During a process of adsorption of vinasse in two stages, it was possible to obtain color removal, turbidity and COD of approximately 76, 85 and 69%, respectively. After the adsorption step of vinasse, the solid waste generated in the second stage of adsorption can be burned in the boilers of the power plant itself, affording an energy of 4606 cal g-1.