82 resultados para Derived of petroleum hydrocarbon
Resumo:
The toxic effect of binary and tertiary combinations of Euphorbia hirta Linn latex powder with other plant molluscicidal compounds, were evaluated against the freshwater snails Lymnaea (Radix) acuminata and Indoplanorbis exustus in pond. These combinations showed significant time and dose dependent effect against both the snails. These compounds at higher doses were also lethal to freshwater fish Channa punctatus (Bloch) (Channidae {Ophicephalidae}), which shares the habitat with these snails, but the LC90 (24h) doses of snails have no apparent killing properties in fish populations when treated in mixed population of snails and fish.
Resumo:
The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity.
Resumo:
In this study, we isolated Trypanosoma cruzi from chronic Chagas heart disease and from megaesophagus patients. The parasite stock hSLU239 (heart disease) yielded clones h1 and h2, whereas stock mSLU142 (megaesophagus) yielded clones m1, m2, m3 and m4. The parasite growth kinetics, doubling time and differentiation in axenic liquid medium showed broad behavioral diversity. It was shown that a particular pattern of behavior for a parental stock could not necessarily be assigned for subsequent clones. This study indicates that i) each Chagas disease patient is infected with several T. cruzi populations; ii) clonal lines derived from patient samples may have different biological characteristics from the original isolate; and that iii) additional behavioral and/or molecular markers are required for further characterization of Trypanosoma cruzi stocks and clones derived from Chagas disease patients in order to identify correlations with pathology.
Resumo:
In a complete study in 25 patients with American cutaneous leishmaniasis, caused by Leishmania braziliensis complex, immunotherapeutic efficacy of parasite derived antigen (94-67 KD) has been compared to antimonial therapy. Additionally, to delineate the mechanism of therapeutic success, microscopical features of immune response in active lesions and healed or non-healed lesions following therapy were analyzed. The results showed that cure rates in immunotherapy and chemoterapy were equal (>83 por cento). The immunohistochemical changes in two therapeutic groups were also largely similar. The analysis of humoral and cellular immune response suggest that appropriate stimulation of T helper cells in the lesion site, in association with one or more cytokines, play a key role in the healing process.
Resumo:
A comparative study was undertaken on the immunogenic properties of 63kDa glycoproteins obtained from five different strains/species of Leishmania and assessed in C57BL/10 mice. The humoral immune response was assessed by ELISA against the five different antigens of the immunized animals. The cellular immune response was derived from Leishmania. The response was found to be species-specific in all of determined by means of the cytokine profiles secreted by the spleen cells of immunized animals. The presence of ³-IFN and IL-2, and the absence of IL-4 in the supernatants of cells stimulated by L. amazonensis antigen established that the cellular response is of Th1 type. The five glycoproteins tested were equally effective in protecting C57BL/10 mice against challenge by L. amazonensis. About 50% of the immunized animals were protected for six months.
Resumo:
Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF). Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.
Resumo:
This study was undertaken to evaluate an enzyme immunoassay (EIA) for hepatitis C virus antibody detection (anti-HCV), using just one antigen. Anti-HCV EIA was designed to detect anti-HCV IgG using on the solid-phase a recombinant C22 antigen localized at the N-terminal end of the core region of HCV genome, produced by BioMérieux. The serum samples diluted in phosphate buffer saline were added to wells coated with the C22, and incubated. After washings, the wells were loaded with conjugated anti-IgG, and read in a microtiter plate reader (492 nm). Serum samples of 145 patients were divided in two groups: a control group of 39 patients with non-C hepatitis (10 acute hepatitis A, 10 acute hepatitis B, 9 chronic hepatitis B, and 10 autoimmune hepatitis) and a study group consisting of 106 patients with chronic HCV hepatitis. In the study group all patients had anti-HCV detected by a commercially available EIA (Abbott®), specific for HCV structural and nonstructural polypeptides, alanine aminotransferase elevation or positive serum HCV-RNA detected by nested-PCR. They also had a liver biopsy compatible with chronic hepatitis. The test was positive in 101 of the 106 (95%) sera from patients in the study group and negative in 38 of the 39 (97%) sera from those in the control group, showing an accuracy of 96%. According to these results, our EIA could be used to detect anti-HCV in the serum of patients infected with hepatitis C virus.
Resumo:
Chloroquine has been the mainstay of malaria chemotherapy for the past five decades, but resistance is now widespread. Pyrimethamine or proguanil form an important component of some alternate drug combinations being used for treatment of uncomplicated Plasmodium falciparum infections in areas of chloroquine resistance. Both pyrimethamine and proguanil are dihydrofolate reductase (DHFR) inhibitors, the proguanil acting primarily through its major metabolite cycloguanil. Resistance to these drugs arises due to specific point mutations in the dhfr gene. Cross resistance between cycloguanil and pyrimethamine is not absolute. It is, therefore, important to investigate mutation rates in P. falciparum for pyrimethamine and proguanil so that DHFR inhibitor with less mutation rate is favored in drug combinations. Hence, we have compared mutation rates in P. falciparum genome for pyrimethamine and cycloguanil. Using erythrocytic stages of P. falciparum cultures, progressively drug resistant lines were selected in vitro and comparing their RFLP profile with a repeat sequence. Our finding suggests that pyrimethamine has higher mutation rate compared to cycloguanil. It enhances the degree of genomic polymorphism leading to diversity of natural parasite population which in turn is predisposes the parasites for faster selection of resistance to some other antimalarial drugs.
Resumo:
Experiments were carried out to analyze the biological characteristics of two sympatric isolates of Schistosoma mansoni derived from humans and murines in a low endemic transmission area (Sumidouro county, state of Rio de Janeiro, Brazil). Sympatric reared-laboratory Biomphalaria glabrata and C3H/He mice were used as experimental hosts. Parameters assessed comprised: precercarial period, infectivity and mortality (snails), prepatent period, infectivity (percentage of cercariae maturation into adult worm) and intestinal egg count (mice). The murine isolate showed a shorter precercarial period and higher infectivity than human isolate (p < 0.05). This biological heterogenicity did not correspond to the vertebrate data because any biological parameter presented significant difference (p > 0.05). These data suggest that both isolates are local sub-populations, providing support for the hypotheses that in a same biotope mixed populations or sub-populations circulate among their main host (human beings) and/or rodent as an anfixenous infection.
Resumo:
beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.
Resumo:
The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.
Resumo:
The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5) cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37ºC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6%) and on day 4 in the J774 cells (51%). This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.
Resumo:
Endothelial nitric oxide synthase (eNOS) is the primary physiological source of nitric oxide (NO) that regulates cardiovascular homeostasis. Historically eNOS has been thought to be a constitutively expressed enzyme regulated by calcium and calmodulin. However, in the last five years it is clear that eNOS activity and NO release can be regulated by post-translational control mechanisms (fatty acid modification and phosphorylation) and protein-protein interactions (with caveolin-1 and heat shock protein 90) that direct impinge upon the duration and magnitude of NO release. This review will summarize this information and apply the post-translational control mechanisms to disease states.