97 resultados para Degraded steppe
Resumo:
After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.
Resumo:
Soils constructed after mining often have low carbon (C) stocks and low quality of organic matter (OM). Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC) stocks, C distribution in physical fractions of OM and the C management index (CMI) of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactylon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC) and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF) of OM were determined. The CMI components: carbon pool index (CPI), lability (L) and lability index (LI) were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.
Resumo:
ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.
Resumo:
ABSTRACT An alternative for recovery of areas degraded by coal mining is revegetation with rapidly growing leguminous trees, which often do not establish in low fertility soils. The objective of this study was to evaluate the efficiency of native rhizobia isolated from coal mining areas in the nodulation and growth of leguminous trees. We isolated 19 strains of rhizobia from a degraded soil near Criciúma, SC, Brazil, and evaluated the nodulation and growth-promoting capacity of the inoculated isolates for bracatinga (Mimosa scabrella), maricá (M. bimucronata) and angico-vermelho (Parapiptadenia rigida). Isolates UFSC-B2, B6, B8, B9, B11 and B16 were able to nodulate bracatinga, providing average increases of 165 % in shoot dry matter, with a significant contribution to N accumulation. Isolates UFSC-B5, B12, and M8 favored nodulation and growth of maricá, especially isolate UFSC-B12, which promoted increases of 370 % in N accumulation compared to treatment with N fertilizer. All strains were inefficient in promoting growth and N uptake by angico-vermelho. In conclusion, isolation and use of selected rhizobia for bracatinga and maricá plant inoculation can contribute to the growth and accumulation of N, with prospects for use in programs for revegetation of degraded soils in coal mining areas.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
Tropical grasslands under lowland soils are generally underutilized and the litter of forage legumes may be used to recover these degraded pastures. The objective of this work was to study the dynamics of litter decomposition of Arachis pintoi (pinto peanut), Hyparrhenia rufa (thatching grass) and a mixture of both species in a lowland soil. These treatments were analyzed in three areas: grass monoculture, legume monoculture and legume intercropped with the grass during the dry and wet seasons. Litter bags containing the legume, grass or a mixture of both species were incubated to estimate the decomposition rate and microorganism colonization. Decomposition constants (K) and litter half-lives (T1/2) were estimated by an exponential model whereas number of microorganisms in specific media were determined by plate dilution. The decomposition rate, release of nutrients and microorganisms number, especially bacteria, increased when pinto peanut was added to thatching grass, influenced by favorable lignin/N and C/N ratios in legume litter. When pinto peanut litter was incubated in the grass plots, 50% N and P was released within about 135 days in the dry season and in the wet season, the equivalent release occurred within 20 days. These results indicate that A. pintoi has a great potential for nutrient recycling via litter and can be used to recover degraded areas.
Resumo:
The objective of this work was to evaluate the effect of the pasture (Urochloa brizantha) component age on soil biological properties, in a crop-livestock integrated system. The experiment was carried out in a Brazilian savannah (Cerrado) area with 92 ha, divided into six pens of approximately 15 ha. Each pen represented a different stage of the pasture component: formation, P0; one year, P1; two years, P2; three years, P3; and final with 3.5 years, Pf. Samples were taken in the 0-10 cm soil depth. The soil biological parameters - microbial biomass carbon (MBC), microbial biomass respiration (C-CO2), metabolic quotient (qCO2), microbial quotient (q mic), and total organic carbon (TOC) - were evaluated and compared among different stages of the pasture, and between an adjacent area under native Cerrado and another area under degraded pasture (PCD). The MBC, q mic and TOC increased and qCO2 reduced under the different pasture stages. Compared to PCD, the pasture stages had higher MBC, q mic and TOC, and lower qCO2. The crop-livestock integrated system improved soil microbiological parameters and immobilized carbon in the soil in comparison to the degraded pasture.
Resumo:
The objective of this work was to evaluate the effect of cover crops and their desiccation times on upland rice yield and on the levels of nitrate and ammonium in a no-tillage soil. The experiment was carried out in a randomized blocks, with split plots and three replicates. Cover crops (plots) were sowed in the off-season (March 2009). In November 2009, at 30, 20, 10 and 0 days before rice sowing (split plots), herbicide was applied on the cover crops (fallow, Panicum maximum, Urochloa ruziziensis, U. brizantha and millet). Straw and soil were sampled (0 - 10 cm) at the sowing day, and after 7, 14, 21, 28 and 35 days. Straws from millet and fallow were degraded more rapidly and provided the lowest level of nitrate in the soil. Urochloa ruziziensis, U. brizantha and P. maximum produced higher amounts of dry matter, and provided the highest levels of nitrate in the soil. Millet provides the lowest nitrate/ammonium ratio and the highest upland rice yield. Desiccations carried out at 30 and 20 days before sowing had the largest levels of nitrate in the soil at the sowing date. Nitrogen content and forms in the soil are affected by cover crops and their desiccation times.
Resumo:
The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC). Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM) decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.
Resumo:
Organosolv and kraft lignins were treated with ozone both in basic and acid media and the reaction was studied kinetically. In contrast to reported studies, ozone was more efective in basic medium. Kraft lignin was degraded faster than organosolv lignin in both media but in the basic medium the rate of reaction was very much faster than in the acid one: for kraft lignin, the observed degradation was 93% for 2 min of reaction in the basic medium and 56% for 10 min of reaction in the acid medium; for organosolv lignin, 47% and 25%, respectively, in the same times. Higher phenolic hydroxyl groups contents increase the reaction rate.
Resumo:
Polychlorinated biphenyls (PCBs) are a class of 209 chemical compounds with the molecular formula C12H10-nCl n, where 1 <= n <= 10. They were commercially produced as complex mixtures for various uses, being employed principally as dielectric fluids in capacitors and transformers. They are not easily degraded due their chemical and physical stability and tend to bioaccumulate in the organisms. After the discovery of their xenobiotic activity, restrictions were imposed for their use, as well as for their discards. Nowadays the development of recovery processes for contaminated environment urges to be done due to the extension of reached areas.
Resumo:
The susceptibility of Drosophila melanogaster to carbofuran and the use of this organism in biomonitoring residues of the insecticide in cabbage was evaluated. Under the conditions of the bioassay, residues-film bioassay in Petri dish, carbofuran degraded depending on the temperature and time of exposure. Bioassays conducted with D. melanogaster showed that its toxicity increases with temperature (20 to 35 °C). LC50 values, calculated as a function of temperature, ranged from 3.6 to 10.5 mg/g body weight (bw) for males and from 2.9 to 8.7 mg/g bw for females. The formulated product Furadan® G was applied on cabbage (Brassica oleracea, var. capitata) and the residues of carbofuran were determined by bioassay. The determination limit of the bioassay was 0.1 mg/kg and the method presented reproducibility with coefficient variation of 17 %. The validation of the bioassay by high performance liquid chromatography confirms the viability of the bioassay with D. melanogaster in monitoring the residues of carbofuran in cabbage.
Resumo:
The use of pesticides in agriculture presents some problems to ecosytems as a consequence of their remaining in the environment. Conventional methods for environmental decontamination sometimes just transfer these residues from one place to another. The use of gamma radiation from cobalt-60 to induce 2,4-D degradation in aqueous solution containing humic acid was studied. Results show that the herbicide is completely degraded after treatment with a 30 kGy dose. There were decreases in the degradation of the 2,4-D when humic acid was added at all doses. Some radiolytic products are proposed. The 2,4-D radiolytic yields (G) from 2,4-D were calculated.
Resumo:
Iron, copper and lead distribution was evaluated in sediment cores from a disturbed mangrove area in Guanabara Bay: a core from a seaward site where mangrove vegetation was removed ~20 yr before sampling (MD); a core from an intermediate site with dead vegetation, apparently due to insect attack (MP), and a core from a landward site with living vegetation (MV). Metal concentrations showed increasing values seaward while organic matter content showed an inverse trend, displaying a negative correlation with metals. This unusual correlation indicates opposite sources, since metals come from the bay and the main OM origin is probably degraded mangrove vegetation. Plant cover loss seems to be a critical factor affecting metal accumulation, particularly due to changes in OM input.
Resumo:
Many industrial processes produce effluents with a wide variety of xenobiotic organic pollutants, which cannot be efficiently degraded by conventional biological treatments. Thus, the development of new technologies to eliminate these refractory compounds in water has become very imperative in order to assure the quality of this important resource. Ozonation is a very promising process for the treatment of wastewaters containing non-easily removable organic compounds. The present work aims at highlighting new methods of enhancing the efficiency of ozone towards the removal organic pollutants in aqueous solution. Special attention is given to catalytic ozonation processes contemplating homo- and heterogeneous catalysis, their activity and mechanisms. Recent results and future prospects about the application of these processes to real effluents are also evaluated.