45 resultados para Decapeptide Agonists


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the present research was to elucidate the roles and mechanisms by which the sensory nervous system, through the actions of potent vasodilator neuropeptides, regulates cardiovascular function in both the normal state and in the pathophysiology of hypertension. The animal models of acquired hypertension studied were deoxycorticosterone-salt (DOC-salt), subtotal nephrectomy-salt (SN-salt), and Nomega-nitro-L-arginine methyl ester (L-NAME)-induced hypertension during pregnancy in rats. The genetic model was the spontaneously hypertensive rat (SHR). Calcitonin gene-related peptide (CGRP) and substance P (SP) are potent vasodilating neuropeptides. In the acquired models of hypertension, CGRP and SP play compensatory roles to buffer the blood pressure (BP) increase. Their synthesis and release are increased in the DOC-salt model but not in the SN-salt model. This suggests that the mechanism by which both models lower BP in SN-salt rats is by increased vascular sensitivity. CGRP functions in a similar manner in the L-NAME model. In the SHR, synthesis of CGRP and SP is decreased. This could contribute to the BP elevation in this model. The CGRP gene knockout mouse has increased baseline mean arterial pressure. The long-term synthesis and release of CGRP is increased by nerve growth factor, bradykinin, and prostaglandins and is decreased by alpha2-adrenoreceptor agonists and glucocorticoids. In several animal models, sensory nervous system vasoactive peptides play a role in chronic BP elevation. In the acquired models, they play a compensatory role. In the genetic model, their decreased levels may contribute to the elevated BP. The roles of CGRP and SP in human hypertension are yet to be clarified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The responsiveness of glycogen breakdown to cAMP was investigated in isolated perfused liver from male Wistar fed rats (200-220 g) with insulin-induced hypoglycemia. The activation of glycogenolysis by 3 µM cAMP was decreased (P<0.05) in livers from rats with hypoglycemia induced by the administration of insulin or during the direct infusion of insulin into the isolated liver. The direct effect of insulin on glycogen catabolism promoted by 3 µM cAMP occurred as early as 3 min after starting insulin infusion. In contrast, the cAMP agonists resistant to phosphodiesterases, 8Br-cAMP and 6MB-cAMP, used at the same concentration as cAMP, i.e., 3 µM, did not modify the effect of insulin. The data suggest that the decreased hepatic responsiveness of glycogen breakdown during insulin-induced hypoglycemia is a direct effect of insulin decreasing the intracellular levels of cAMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist proposed to be a neuroprotective agent in the treatment of patients with Parkinson's disease. Both in vivo and in vitro studies have shown that apomorphine displays both antioxidant and pro-oxidant actions, and might have either neuroprotective or neurotoxic effects on the central nervous system. Some of the neurotoxic effects of apomorphine are mediated by its oxidation derivatives. In the present review, we discuss recent studies from our laboratory in which the molecular, cellular and neurobehavioral effects of apomorphine and its oxidized derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), were evaluated in different experimental models, i.e., in vitro genotoxicity in Salmonella/microsome assay and WP2 Mutoxitest, sensitivity assay in Saccharomyces cerevisiae, neurobehavioral procedures (inhibition avoidance task, open field behavior, and habituation) in rats, stereotyped behavior in mice, and Comet assay and oxidative stress analyses in mouse brain. Our results show that apomorphine and 8-OASQ induce differential mutagenic, neurochemical and neurobehavioral effects. 8-OASQ displays cytotoxic effects and oxidative and frameshift mutagenic activities, while apomorphine shows antimutagenic and antioxidant effects in vitro. 8-OASQ induces a significant increase of DNA damage in mouse brain tissue. Both apomorphine and 8-OASQ impair memory for aversive training in rats, although the two drugs showed a different dose-response pattern. 8-OASQ fails to induce stereotyped behaviors in mice. The implications of these findings are discussed in the light of evidence from studies by other groups. We propose that the neuroprotective and neurotoxic effects of dopamine agonists might be mediated, in part, by their oxidized metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beta-2-agonists have been widely used by asthmatic subjects to relieve their obstructive symptoms. However, there are reports that continuous use could lead to loss of bronchial protection and exacerbation of asthma symptoms. We evaluated the effect of two regimens of salbutamol administration (twice and five times a week) in a model of chronic airway inflammation in male Hartley guinea pigs (protocol starting weight: 286 ± 30 g) induced by repeated exposures to aerosols of ovalbumin (OVA). After sensitization, guinea pigs were exposed to aerosols of 0.1 mg/ml salbutamol solution twice a week (OVA + S2x, N = 7) or five times a week (OVA + S5x, N = 8). We studied allergen-specific (OVA inhalation time) and -nonspecific (response to methacholine) respiratory system responsiveness. Seventy-two hours after the last OVA challenge, guinea pigs were anesthetized and tracheostomized, respiratory system resistance and elastance were measured and a dose-response curve to inhaled methacholine chloride was obtained. Specific IgG1 was also quantified by the passive cutaneous anaphylactic technique. OVA-sensitized guinea pigs (N = 8) showed reduction of the time of OVA exposure before the onset of respiratory distress, at the 5th, 6th and 7th exposures (P < 0.001). The OVA + S2x group (but not the OVA + S5x group) showed a significant increase in OVA inhalation time. There were no significant differences in pulmonary responsiveness to methacholine among the experimental groups. OVA + S2x (but not OVA + S5x) animals showed a decrease in the levels of IgG1-specific anaphylactic antibodies compared to the OVA group (P < 0.05). Our results suggest that, in this experimental model, frequent administration of ß2-agonists results in a loss of some of their protective effects against the allergen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg9BK (DBK). Our aim was to determine the potential expression of kinin B1 and B2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentration-contraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD2) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B1 and B2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of β2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by β2- and β3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focal adhesion kinase (FAK) is a broadly expressed tyrosine kinase implicated in cellular functions such as migration, growth and survival. Emerging data support a role for FAK in cardiac development, reactive hypertrophy and failure. Data reviewed here indicate that FAK plays a critical role at the cellular level in the responses of cardiomyocytes and cardiac fibroblasts to biomechanical stress and to hypertrophic agonists such as angiotensin II and endothelin. The signaling mechanisms regulated by FAK are discussed to provide insight into its role in the pathophysiology of cardiac hypertrophy and failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT2R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT2R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca2+-free medium or the subsequent tonic constrictions induced by the addition of Ca2+ in the absence of agonists. Thus, the contractions induced by Ca2+ release from intracellular stores and Ca2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca2+. Neither levels of angiotensins nor of AT2R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca2+ entry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D2 receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D2 receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D2 receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D2 receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas.