60 resultados para Critical Uncertainties
Resumo:
Part I of this article, the author explained the difficulties of achieving accuracy of nurses' diagnoses, the relevance of critical thinking to the achievement of accuracy, and newer views of critical thinking. In Part II, the critical thinking dimensions identified as important for nursing practice are applied in the diagnostic process using a case study of a 16 year old girl with type 1 diabetes. Application of seven cognitive skills and ten habits of mind illustrate the importance of using critical thinking for accuracy of nurses' diagnoses. Ten strategies are proposed for self-development of critical thinking abilities.
Resumo:
Objective to verify the associations between stress, Coping and Presenteeism in nurses operating on direct assistance to critical and potentially critical patients. Method this is a descriptive, cross-sectional and quantitative study, conducted between March and April 2010 with 129 hospital nurses. The Inventory of stress in nurses, Occupational and Coping Questionnaire Range of Limitations at Work were used. For the analysis, the Kolmogorov-Smirnov test, correlation coefficient of Pearson and Spearman, Chi-square and T-test were applied. Results it was observed that 66.7% of the nurses showed low stress, 87.6% use control strategies for coping stress and 4.84% had decrease in productivity. Direct and meaningful relationships between stress and lost productivity were found. Conclusion stress interferes with the daily life of nurses and impacts on productivity. Although the inability to test associations, the control strategy can minimize the stress, which consequently contributes to better productivity of nurses in the care of critical patients and potentially critical.
Resumo:
Under natural environmental conditions, blowflies utilize discrete and ephemeral feeding resources such as decaying carcasses. Competition for food on such feeding substrates is usually very severe, and only the individuals that are capable of attaining the critical larval weight for pupation will be able to survive. This critical weight is hitherto unknown for several blowfly species; therefore, the current work is aimed at obtaining such a critical value for four blowfly species of the genera Chrysomya and Lucilia, deploying two types of feeding substrate, namely, artificial diet and macerated bovine meat. On the whole, the critical weights ranged from 30 to 35 mg. The lowest larval weight which permitted pupation was 30.0 mg for Chrysomya megacephala reared on macerated bovine meat. This species was also the best adapted to pupation at low larval weights in relation to the maximum larval weight for males. Regarding the pupation of females, the best-adapted individual was a C. albiceps specimen exhibiting a critical weight that was equal to 39.20 % of the maximum value obtained. Concerning all the species and diet types, the female individuals exhibited the lowest critical weights that produced viable pupae, probably representing an evolutionary strategy that favoured the survival of females, responsible for the egg formation, contributing to the establishment of future generations. Regarding the loss (in percentage) of adult biomass in relation to the third instar larvae, the females of C. megacephala lost less weight than males in both feeding substrates. On the other hand, such a loss of weight occurred in males of C. albiceps and L. cuprina.
Resumo:
To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.
Resumo:
The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.
Resumo:
Soil penetration resistance is an important indicator of soil physical quality and the critical limit of 2 MPa has been widely used to characterize the soil physical quality, in both no-tillage and conventional systems. The aim of this study was to quantify the influence of different tillage and cropping systems on the soil penetration resistance in a Rhodic Eutrudox. The experiment was carried out in a 5 × 2 factorial, completely randomized block design (tillage systems vs cropping systems), with four replications. The tillage systems consisted of: conventional tillage disk harrow; minimum tillage with annual chiseling; minimum tillage with chiseling every three years; no-tillage for 11 consecutive years; and no-tillage for 24 consecutive years. The factor cropping systems was represented by: crop rotation and crop succession. The soil penetration resistance (SPR) was determined in 20 soil samples per treatment and layer (0.0-0.10; 0.10-0.20 and 0.20-0.30 m) for each soil matric potential: -6, -10, -33, -100, -500 kPa. The SPR was determined at a volumetric soil water content equivalent to the fraction of plant-available water of 0.7. There were no differences of soil penetration resistance between the two cropping systems. Differences in soil penetration resistance among tillage systems were related to the matric potential at which the samples were equilibrated. The critical SPR limit of 2 MPa normally used for conventional tillage should be maintained. However, this value of 2 MPa is inappropriate for the physical quality characterization of Rhodic Eutrudox under no-tillage and/or minimum tillage with chiseling. Regardless of the cropping systems, the critical SPR limit should be raised to 3 MPa for minimum tillage with chiseling and to 3.5 MPa for no-tillage.
Resumo:
Biochar (carbonized biomass for agricultural use) has been used worldwide as soil amendment and is a technology of particular interest for Brazil, since its "inspiration" is from the historical Terra Preta de Índios(Amazon Dark Earth), and also because Brazil is the world's largest charcoal producer, generating enormous residue quantities in form of fine charcoal and due to the availability of different residual biomasses, mainly from agroindustry (e.g., sugar-cane bagasse; wood and paper-mill wastes; residues from biofuel industries; sewage sludge etc), that can be used for biochar production, making Brazil a key actor in the international scenario in terms of biochar research and utilization). In the last decade, numerous studies on biochar have been carried out and now a vast literature, and excellent reviews, are available. The objective of this paper is therefore to deliver a critical review with some highlights on biochar research, rather than an exhaustive bibliographic review. To this end, some key points considered critical and relevant were selected and the pertinent literature "condensed", with a view to guide future research, rather than analyze trends of the past.
Resumo:
The Mehlich-1 (M-1) extractant and Monocalcium Phosphate in acetic acid (MCPa) have mechanisms for extraction of available P and S in acidity and in ligand exchange, whether of the sulfate of the extractant by the phosphate of the soil, or of the phosphate of the extractant by the sulfate of the soil. In clayey soils, with greater P adsorption capacity, or lower remaining P (Rem-P) value, which corresponds to soils with greater Phosphate Buffer Capacity (PBC), more buffered for acidity, the initially low pH of the extractants increases over their time of contact with the soil in the direction of the pH of the soil; and the sulfate of the M-1 or the phosphate of the MCPa is adsorbed by adsorption sites occupied by these anions or not. This situation makes the extractant lose its extraction capacity, a phenomenon known as loss of extraction capacity or consumption of the extractant, the object of this study. Twenty soil samples were chosen so as to cover the range of Rem-P (0 to 60 mg L-1). Rem-P was used as a measure of the PBC. The P and S contents available from the soil samples through M-1 and MCPa, and the contents of other nutrients and of organic matter were determined. For determination of loss of extraction capacity, after the rest period, the pH and the P and S contents were measured in both the extracts-soils. Although significant, the loss of extraction capacity of the acidity of the M-1 and MCPa extractants with reduction in the Rem-P value did not have a very expressive effect. A “linear plateau” model was observed for the M-1 for discontinuous loss of extraction capacity of the P content in accordance with reduction in the concentration of the Rem-P or increase in the PBC, suggesting that a discontinuous model should also be adopted for interpretation of available P of soils with different Rem-P values. In contrast, a continuous linear response was observed between the P variables in the extract-soil and Rem-P for the MCPa extractor, which shows increasing loss of extraction capacity of this extractor with an increase in the PBC of the soil, indicating the validity of the linear relationship between the available S of the soil and the PBC, estimated by Rem-P, as currently adopted.
Resumo:
Field studies were conducted over 3 years in southeast Buenos Aires, Argentina, to determine the critical period of weed control in maize (Zea mays L.). The treatments consisted of two different periods of weed interference, a critical weed-free period, and a critical time of weed removal. The Gompertz and logistic equations were fitted to relative yields representing the critical weed-free and the critical time of weed removal, respectively. Accumulated thermal units were used to describe each period of weed-free or weed removal. The critical weed-free period and the critical time of weed removal ranged from 222 to 416 and 128 to 261 accumulated thermal units respectively, to prevent yield losses of 2.5%. Weed biomass proved to be inverse to the crop yield for all the years studied. When weeds competed with the crop from emergence, a large increase in weed biomass was achieved 10 days after crop emergence. However, few weed seedlings emerged and prospered after the 5-6 leaf maize stage (10-20 days after emergence).
Resumo:
The objective of this study was to establish critical values of the N indices, namely soil-plant analysis development (SPAD), petiole sap N-NO3 and organic N in the tomato leaf adjacent to the first cluster (LAC), under soil and nutrient solution conditions, determined by different statistical approaches. Two experiments were conducted in randomized complete block design with four repli-cations. Tomato plants were grown in soil, in 3 L pot, with five N rates (0, 100, 200, 400 and 800 mg kg-1) and in solution at N rates of 0, 4, 8, 12 and 16 mmol L-1. Experiments in nutrient solution and soil were finished at thirty seven and forty two days after transplanting, respectively. At those times, SPAD index and petiole sap N-NO3 were evaluated in the LAC. Then, plants were harvested, separated in leaves and stem, dried at 70ºC, ground and weighted. The organic N was determined in LAC dry matter. Three statistical procedures were used to calculate critical N values. There were accentuated discrepancies for critical values of N indices obtained with plants grown in soil and nutrient solution as well as for different statistical procedures. Critical values of nitrogen indices at all situations are presented.
Resumo:
A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.
Resumo:
In this paper I provide a concise plan about Hegel's Lectures on the Philosophy of Religion critical editions, laying stress on the method followed by editors in order to build a coherent text with the sources at their disposal. The Marheineke's edition (1832) is analysed with special attention since it was the edition that caused the division between a Right and a Left, opening the discussion on speculative theism as a consequence of the difficulty to distinguish the systematic part from the historical one in the reasoning carried out by Hegel.
Resumo:
ABSTRACTA model to estimate yield loss caused by Asian soybean rust (ASR) (Phakopsora pachyrhizi) was developed by collecting data from field experiments during the growing seasons 2009/10 and 2010/11, in Passo Fundo, RS. The disease intensity gradient, evaluated in the phenological stages R5.3, R5.4 and R5.5 based on leaflet incidence (LI) and number of uredinium and lesions/cm2, was generated by applying azoxystrobin 60 g a.i/ha + cyproconazole 24 g a.i/ha + 0.5% of the adjuvant Nimbus. The first application occurred when LI = 25% and the remaining ones at 10, 15, 20 and 25-day intervals. Harvest occurred at physiological maturity and was followed by grain drying and cleaning. Regression analysis between the grain yield and the disease intensity assessment criteria generated 56 linear equations of the yield loss function. The greatest loss was observed in the earliest growth stage, and yield loss coefficients ranged from 3.41 to 9.02 kg/ha for each 1% LI for leaflet incidence, from 13.34 to 127.4 kg/ha/1 lesion/cm2 for lesion density and from 5.53 to 110.0 kg/ha/1 uredinium/cm2 for uredinium density.
Resumo:
Nutritional status of eight 1.0 and 4.7 years old clones of Eucalyptus grandis, cultivated in a medium textured Ustults - US - and a Quartzipsamments - PS - soils, in Lençóis Paulista, São Paulo, were evaluated by the Diagnosis and Recommendation Integrated System (DRIS) and Critical Level (CL) methods. Based on multivariate discriminant analysis, the DRIS indices described the nutritional status of trees better in relation to tree age and soil type than in relation to nutrient composition. Spearman's correlation coefficients showed statistically significant relationships between volumetric tree growth and nutrients when applying DRIS indices or foliar nutrient concentrations. However, the DRIS indices indicated a lower number of trees with nutritional deficiencies, in relation to the CL method. According to the CL method, P, S, and Ca were deficient in the majority of the soils and tree age categories. By the DRIS method, Ca was the only deficient nutrient in PS soils, and appeared to be particularly limited in one-year-old trees. In conclusion, the DRIS method was more efficient than the CL method in evaluating the nutritional status of eucalyptus trees.
Resumo:
Scarcity of long-term series of sediment-related variables has led watershed managers to apply mathematical models to simulate sediment fluxes. Due to the high efforts for installation and maintenance of sedimentological gauges, tracers have been pointed out as an alternative to validate soil redistribution modelling. In this study, the 137Cs technique was used to assess the WASA-SED model performance at the Benguê watershed (933 km²), in the Brazilian semiarid. Qualitatively, good agreement was found among the 137Cs technique and the WASA-SED model results. Nonetheless, quantitatively great differences, up to two orders of magnitude, were found between the two methods. Among the uncertainties inherent to the 137Cs technique, definition of the reference inventory seems to be a major source of imprecision. In addition, estimations of water and sediment fluxes with mathematical models usually also present high uncertainty, contributing to the quantitative differences of the soil redistribution estimates with the two methods.