64 resultados para Cotranslational translocation
Resumo:
Boron deficiency in coffee is widely spread in Brazilian plantations, but responses to B fertilizer have been erratic, depending on the year, form and time of application and B source. A better understanding of the effects of B on plant physiology and anatomy is important to establish a rational fertilization program since B translocation within the plant may be affected by plant anatomy. In this experiment, coffee plantlets of two varieties were grown in nutrient solutions with B levels of 0.0 (deficient), 5.0 µM (adequate) and 25.0 µM (high). At the first symptoms of deficiency, leaves were evaluated, the cell walls separated and assessed for B and Ca concentrations. Scanning electron micrographs were taken of cuts of young leaves and branch tips. The response of both coffee varieties to B was similar and toxicity symptoms were not observed. Boron concentrations in the cell walls increased with B solution while Ca concentrations were unaffected. The Ca/B ratio decreased with the increase of B in the nutrient solution. In deficiency of B, vascular tissues were disorganized and xylem walls thinner. B-deficient leaves had fewer and deformed stomata.
Resumo:
A major constraint to agricultural production in acid soils of tropical regions is the low soil P availability, due to the high adsorption capacity, low P level in the source material and low efficiency of P uptake and use by most of the modern varieties grown commercially. This study was carried out to evaluate the biomass production and P use by forage grasses on two soils fertilized with two P sources of different solubility. Two experiments were carried out, one for each soil (Cambisol and Latosol), using pots filled with 4 dm³ soil in a completely randomized design and a 4 x 2 factorial scheme. The treatments consisted of a combination of four forage plants (Brachiaria decumbens, Brachiaria brizantha, Pennisetum glaucum and Sorghum bicolor) with two P sources (Triple Superphosphate - TSP and Arad Reactive Phosphate - ARP), with four replications. The forage grasses were harvested at pre-flowering, when dry matter weight and P concentrations were measured. Based on the P concentration and dry matter production, the total P accumulation was calculated. With these data, the following indices were calculated: the P uptake efficiency of roots, P use efficiency, use efficiency of available P, use efficiency of applied P and agronomic efficiency. The use of the source with higher solubility (TSP) resulted, generally, in higher total dry matter and total P accumulation in the forage grasses, in both soils. For the less reactive source (ARP), the means found in the forage grasses, for use efficiency and efficient use of available P, were always higher when grown in Latosol, indicating favorable conditions for the solubility of ARP. The total dry matter of Brachiaria brizantha was generally higher, with low P uptake, accumulation and translocation, which indicated good P use efficiency for both P sources and soils. The forage plants differed in the P use potential, due to the sources of the applied P and of the soils used. Less than 10 % of the applied P was immobilized in the forage dry matter. Highest values were observed for TSP, but this was not reflected in a higher use efficiency of P from this source.
Resumo:
Boron deficiency causes large productivity losses in eucalypt stands in extensive areas of the Brazilian Cerrado region, thus understanding B mobility is a key step in selecting genetic materials that will better withstand B limitation. Thus, in this study B mobility was evaluated in two eucalypt clones (68 and 129), under B sufficiency or B deficiency, after foliar application of the 10B isotope tracer to a single mature leaf. Samples of young tissue, mature leaves and roots were collected 0, 1, 5, 12 and 17 days after 10B application. The 10B:11B isotope ratio was determined by HR-ICP-MS. Samples of leaves and xylem sap were collected for the determination of soluble sugars and polyalcohols by ion chromatography. Boron was translocated within eucalypt. Translocation of foliar-applied 10B to the young tissues, mature leaves and roots was higher in clone 129 than in 68. Seventeen days after 10B application to a single mature leaf, between 14 and 18 % of B in the young tissue was originated from foliar B application. In plants with adequate B supply the element was not translocated out of the labeled leaf.
Resumo:
Understanding the magnitude of B mobility in eucalyptus may help to select clones that are more efficient for B use and to design new practices of B fertilization. This study consisted of five experiments with three eucalyptus clones (129, 57 and 58) where the response to and mobility of B were evaluated. Results indicated that clone 129 was less sensitive to B deficiency than clones 68 and 57, apparently due to its ability to translocate B previously absorbed via root systems to younger tissues when B in solution became limiting. Translocation also occurred when B was applied as boric acid only once to a single mature leaf, resulting in higher B concentration in roots, stems and younger leaves. The growth of B-deficient plants was also recovere by a single foliar application of B to a mature leaf. This mobility was greater, when foliar-applied B was supplied in complexed (boric acid + manitol) than in non-complexed form (boric acid alone). When the root system of clone 129 was split in two solution compartments, B supplied to one root compartment was translocated to the shoot and back to the roots in the other compartment, improving the B status and growth. Thus, it appears that B is relatively mobile in eucalyptus, especially in clone 129, and its higher mobility could be due to the presence of an organic compound such as manitol, able to complex B.
Resumo:
In a system in which fertilization is recommended, diagnosis of soil K availability and the establishment of critical levels are made difficult by the possibility of a contribution of non-exchangeable forms of K for plant nutrition. Due to its magnitude, this contribution is well diagnosed in long term experiments and in those which compare fertilization systems with positive and negative balances in terms of replacement of the K extracted by plants. The objective of this study was to evaluate K availability in a Hapludalf under fertilization for sixteen years with the addition of K doses. The study was undertaken in an experiment set up in 1991 and carried out until 2007 in the experimental area of the Soil Department of the Federal University of Santa Maria (Universidade Federal de Santa Maria - UFSM), in Santa Maria (RS), Brazil. The soil was a Typic Hapludalf submitted to four doses of K (0, 60, 120 and 180 kg ha-1 K2O) and subdivided in the second year, when 60 kg ha-1 of K2O were reapplied in the subplots in 0, 1, 2 and 3 times. As of the fifth year, the procedure was repeated. Grain yield above ground dry matter and total K content contained in the plant tissue were evaluated. Soil samples were collected, oven dried, ground, passed through a sieve and submitted to exchangeable K analysis by the Mehlich-1 extractor; non-exchangeable K by boiling HNO3 1 mol L-1 and total K by HF digestion. Potassium fertilization guidelines should foresee the establishment of a critical level as of which the recommended dose should accompany crop needs, which coincides with the quantity exported by the grain, without there being the need for the creation of broad ranges of K availability to predict K fertilization. In adopting the K fertilization recommendations proposed in this manner, there will not be K translocation in the soil profile.
Resumo:
Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.
Resumo:
ABSTRACT Persistent areas of tailings and deposits from coal and gold mining may present high levels of arsenic (As), mainly in the arsenate form, endangering the environment and human health. The establishment of vegetation cover is a key step to reclaiming these environments. Thus, this study aimed to evaluate the potential of Eucalyptus urophylla and E. citriodora seedlings for use in phytoremediation programs of arsenate-contaminated areas. Soil samples were incubated at increasing rates (0, 50, 100, 200 and 400 mg dm-3) of arsenic (arsenate form, using Na2HAsO4) for 15 days. The seedlings were produced in a substrate (vermiculite + sawdust) and were transplanted to the pots with soil three months after seed germination. The values of plant height and diameter were taken during transplanting and 30, 60 and 90 days after transplanting. In the last evaluation, the total leaf area and biomass of shoots and roots were also determined. The values of available As in soil which caused a 50 % dry matter reduction (TS50%), the As translocation index (TI) from the roots to the shoot of the plants, and its bioconcentration factor (BF) were also calculated. Higher levels of arsenate in the soil significantly reduced the dry matter production of roots and shoots and the height of both species, most notably in E. urophylla plants. The highest levels of As were found in the root, with higher values for E. citriodora (ranging from 253.86 to 400 mg dm-3). The TI and BF were also reduced with As doses, but the values found in E. citriodora were significantly higher than in E. urophylla. E. citriodora plants presented a higher capacity to tolerate As and translocate it to the shoot than E. urophylla. Although these species cannot be considered as hyperaccumulators of As, E. citriodora presented the potential to be used in phytoremediation programs in arsenate-contaminated areas due to the long-term growth period of this species.
Resumo:
The genotypic differences on growth and yield of common bean (Phaseolus vulgaris L.) in response to P supply were evaluated in a field experiment under biological N2 fixation. Eight cultivars were grown at two levels of applied P (12 and 50 kg ha-1 of P -- P1 and P2 respectively), in randomized block design in factorial arrangement. Vegetative biomass was sampled at three ontogenetic stages. The effects of genotype and phosphorus were significant for most traits, but not the genotype ´ phosphorus interaction. The cultivars presented different patterns of biomass production and nutrient accumulation, particularly on root system. At P1, P accumulation persisted after the beginning of pod filling, and P translocation from roots to shoots was lower. The nodule senescence observed after flowering might have reduced N2 fixation during pod filling. The responses of vegetative growth to the higher P supply did not reflect with the same magnitude on yield, which increased only 6% at P2; hence the harvest index was lower at P2. The cultivars with highest yields also presented lower grain P concentrations. A sub-optimal supply of N could have limited the expression of the yield potential of cultivars, reducing the genotypic variability of responses to P levels.
Resumo:
In order to identify useful parameters for maize genetic breeding programs aiming at a more efficient use of N, two maize varieties of contrasting N efficiency, Sol da Manhã NF (efficient) and Catetão (inefficient) were compared. Experiments were carried out under field and greenhouse conditions, at low and high N levels. The parameters analysed included total and relative plant and grain N content, biomass and the activities of nitrate reductase and glutamine synthetase in different parts of the plant. It was found that the translocation efficiency of N and photoassimilates to the developing seeds and the source-sink relations were significantly different for the two varieties. N content of the whole plant and grain, cob weight and the relative ear dry weight were useful parameters for characterizing the variety Sol da Manhã NF as to its efficient use of N. Enzymes activity of glutamine synthetase (transferase reaction) and nitrate reductase did not differ among the varieties.
Resumo:
The control and regrowth after nicosulfuron reduced rate treatment of Johnsongrass (Sorghum halepense L. Pers.) populations, from seven Argentinean locations, were evaluated in pot experiments to assess if differential performance could limit the design and implementation of integrated weed management programs. Populations from humid regions registered a higher sensibility to reduced rates of nicosulfuron than populations from subhumid regions. This effect was visualised in the values of regression coefficient of the non-linear models (relating fresh weight to nicosulfuron rate), and in the time needed to obtain a 50% reduction of photosynthesis rate and stomatal conductance. The least leaf CO2 exchange of subhumid populations could result in a lower foliar absorption and translocation of nicosulfuron, thus producing less control and increasing their ability to sprout and produce new aerial biomass. The three populations from subhumid regions, with less sensibility to nicosulfuron rates, presented substantial difference in fresh weight, total rhizome length and number of rhizome nodes, when they were evaluated 20 week after treatment. In consequence, a substantial Johnsongrass re-infestation could occur, if rates below one-half of nicosulfuron labeled rate were used to control Johnsongrass in subhumid regions.
Resumo:
The objectives of this study were to determine low-P tolerance mechanisms in contrasting wheat genotypes and to evaluate the association of these mechanisms to differential gene expression. Wheat seedlings of cultivars Toropi (tolerant to low-P availability) and Anahuac (sensitive) were evaluated. Seedlings were hydroponically grown in the absence or presence of P (1.0 mmol L-1) during three different time periods: 24, 120 and 240 hours. Free phosphate (Pi) and total P contents were measured in shoots and roots. The experiment's design was in randomized blocks with three replicates, each formed by ten plants. The relative expression of genes encoding the malate transporter TaALMT1 and the transcription factor PTF1 was evaluated. Phosphorus starvation beyond ten days increased the expression of TaALMT1 only in 'Toropi'. PTF1's expression was early induced in both genotypes under P starvation, but remained significant after ten days only in 'Toropi'. Shoot Pi concentration in 'Toropi' was independent from P availability; under starvation, 'Toropi' favored the maintenance of shoot Pi concentration. The low-P tolerance of Toropi cultivar at initial growth stages is mainly due to its ability to maintain constant the Pi shoot level.
Resumo:
210Po concentrations have been determined in one green alga and in five freshwater plants grown in a pond of the Carapebus restinga (State of Rio de Janeiro). The alga Chara sp showed elevated concentration of 210Po, similar to that observed for marine algae. All the other plants had the lowest concentration of 210Po in the stems and the highest in the roots. Intermediate values were observed in the leaves. The unexpected high concentration of 210Po in the roots, even superior to reported values for roots of plants from high radioactive background areas, must be due to the elevated levels of this radionuclide in associated soils that are known to be rich in humic organic material. There seem to have been no translocation of this radionuclide from the roots to the other parts of the plants.
Resumo:
The 10B isotope tracer technique is essential to study the B mobility in plants. Factors that can influence the quality of measured B isotope ratios were optimized experimentally using High Resolution Inductively Coupled Plasma Mass Spectrometry (HRICP-MS). An isotopically certified standard (NIST SRM-951) was used. The best combination was obtained using a resolution of 400, a RF power of 1250 W, followed by 15 measurements over a 10-s integration period each (15*10). Utilizing this approach it was possible to obtain a precision of 0.3 % in standard material and 2z % in the experimental samples. The results show the importance of establishing optimized work conditions before carrying out the analytical series.
Resumo:
PURPOSE: To investigate the prevalence of chromosomal abnormalities in couples with two or more recurrent first trimester miscarriages of unknown cause. METHODS: The study was conducted on 151 women and 94 partners who had an obstetrical history of two or more consecutive first trimester abortions (1-12 weeks of gestation). The controls were 100 healthy women without a history of pregnancy loss. Chromosomal analysis was performed on peripheral blood lymphocytes cultured for 72 hours, using Trypsin-Giemsa (GTG) banding. In all cases, at least 30 metaphases were analyzed and 2 karyotypes were prepared, using light microscopy. The statistical analysis was performed using the Student t-test for normally distributed data and the Mann-Whitney test for non-parametric data. The Kruskal-Wallis test or Analysis of Variance was used to compare the mean values between three or more groups. The software used was Statistical Package for the Social Sciences (SPSS), version 17.0. RESULTS: The frequency of chromosomal abnormalities in women with recurrent miscarriages was 7.3%, including 4.7% with X-chromosome mosaicism, 2% with reciprocal translocations and 0.6% with Robertsonian translocations. A total of 2.1% of the partners of women with recurrent miscarriages had chromosomal abnormalities, including 1% with X-chromosome mosaicism and 1% with inversions. Among the controls, 1% had mosaicism. CONCLUSION: An association between chromosomal abnormalities and recurrent miscarriage in the first trimester of pregnancy (OR=7.7; 95%CI 1.2--170.5) was observed in the present study. Etiologic identification of genetic factors represents important clinical information for genetic counseling and orientation of the couple about the risk for future pregnancies and decreases the number of investigations needed to elucidate the possible causes of miscarriages.
Resumo:
Abstract: Blood samples collection is a common method in biological research using domestic animals. However, most blood sampling techniques are complicated and highly invasive and may therefore not be appropriate for wildlife animals in research concerning stress. Thus, a non-invasive method to measure steroid hormones is critically needed. The first goal of this study was to determine how glucocorticoids concentrations are impacted by translocation and reproductive activity in crab-eating-fox (Cerdocyoun thous) in captivity. The physiological relevance of fecal glucocorticoid metabolites was further validated by demonstrating: (1) The translocation of a male to a females enclosure resulted in a 3.5-fold increase compared to baseline concentrations, (2) changes in adrenocortical activity, as reflected in concentrations of fecal cortisol metabolites during reproduction, gestation and lactation in females foxes, indicating that social interactions resulted in large increases of fecal glucocorticoids metabolites during the reproductive season. From these findings we conclude that fecal samples can be used for the non-invasive assessment of adrenocortical status in crab-eating-fox.