102 resultados para Copper oxide nano-particles, Polyaniline derivatives film, Hydrogen peroxide, Electrocatalysis
Resumo:
In this work, we describe the immobilization of the dinuclear compound [Cu2(apyhist)2Cl2](ClO4)2 (1) and its derived cations complexes, obtained in water solution or by deprotonation of the imidazolate moiety in the ligand leading to a cyclic tetranuclear species, in the Nafion® membrane on glass carbon electrode surface. After that, we studied the influence of the equilibrium in the electrocatalytic activity towards the reduction of H2O2 in the development of an amperometric sensor for the analytical determination of hydrogen peroxide. This strategy proved successful, and the electrochemical behaviour of the all complexes formed within the Nafion® coatings was characterized. We also provide evidence that its related cyclic tetranuclear imidazolate-bridged complex acts as a catalysts for the intramolecular, two-electron reduction of H2O2.
Resumo:
The aim of the present study was to investigate a cytotoxic oxidative cell stress related and the antioxidant profile of kaempferol, quercetin, and isoquercitrin. The flavonol compounds were able to act as scavengers of superoxide anion (but not hydrogen peroxide), hypochlorous acid, chloramine and nitric oxide. Although flavonoids are widely described as antioxidants and this activity is generally related to beneficial effects on human health, here we show important cytotoxic actions of three well known flavonoids. They were able to promote hemolysis which one was exacerbated on the presence of hypochlorous acid but not by AAPH radical. Therefore, despite they expected scavenger action over free radicals an oxidants, these compounds could be very lesive to living organisms by acting over erythrocytes and maybe other cellular types.
Resumo:
Microbial pathogens such as bacillus Calmette-Guérin (BCG) induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II). Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5) cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5) macrophages per well, we determined sequentially the oxidative burst (H2O2), nitric oxide production and MHC II (IAk) expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.
Resumo:
The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.
Resumo:
The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB), denatured latex (DL), expanded polytetrafluorethylene (ePTFE), or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA), myeloperoxidase (MPO) and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX), as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1). On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05), but oxidative stress due to MDA was not observed until the 7th day (P < 0.05). The number of blood vessels was greater in NLB (P < 0.05) and DL (P < 0.05) mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05) with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF) and fibroplasia (independent of TGF-β1) without influencing collagenesis.
2-Bromo-1,4-naphthoquinone: a potentially improved substitute of menadione in Apatone™ therapy
Resumo:
Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment.
Resumo:
The long-lived flowers of orchids increase the chances of pollination and thus the reproductive success of the species. However, a question arises: does the efficiency of pollination, expressed by fruit set, vary with the flower age? The objective of this study was to verify whether the flower age of Corymborkis flava(Sw.) Kuntze affects pollination efficiency. The following hypotheses were tested: 1) the fruit set of older flowers is lower than that of younger ones; 2) morphological observations (perianth and stigmatic area), stigma receptivity test by using a solution of hydrogen peroxide and hand-pollination tests are equally effective in defining the period of stigmatic receptivity. Flowers were found to be receptive from the first to the fourth day of anthesis. Fruit set of older flowers (third and fourth day) was lower than that of younger flowers. Morphological observations, the stigma receptivity test and hand-pollinations were equally effective in defining the period of stigmatic receptivity. However, to evaluate the maximum degree of stigma receptivity of orchid species with long-lived flowers, we recommend hand-pollinations, beyond the period of receptivity.
Resumo:
Neutrophils, eosinophils and macrophages are cells that interact with invading parasites and naive hosts have been shown to have anti-parasitic activity. The initial reaction of these leukocytes is the generation of reactive oxygen species (ROS) to play in parasite expulsion. The present work was carried out to study the effect of total extract, scolex and membrane fractions from Cysticercus cellulosae on respiratory burst by pig neutrophils. Hydrogen peroxide (H2O2) production by neutrophils incubated with metacestode fractions from C. cellulosae showed an increase of: 190% (total extract), 120% (scolex) and 44% (membrane). High antioxidant catalatic activity (33%, 28%, 28% by total extract, scolex and membrane, respectively) was observed in neutrophils incubated with metacestode fractions, which could be an attempt at self-protection. Scolex and membrane fractions increased the phagocytic capacity of neutrophils (44% and 28%, respectively). On the other hand, total cysticerci did not alter the phagocytosis, possibly due to modifications in membrane function, caused by high ROS production from neutrophils in the presence of total cysticerci. Total fraction from C. cellulosae is toxic for neutrophils as shown by the decrease in phagocytic capacity, probably caused by high levels of ROS formation. The difference in toxicity of total extract, scolex and membrane fractions on neutrophils can be explained by the presence of an antigenic effect of the vesicular fluid in the total extract of C. cellulosae.
Resumo:
The determination of total nitrogen, phosphorus, and potassium in plant material can be carried out in a common extract prepared with sulphuric acid and 30 per cent hydrogen peroxide. Nitrogen is estimated by direct nesslerization of a suitable aliquot (1-5 ml of the 50 ml extract made out of 250 mg of dried material); in order to avoid excessive acidity, 10 ml of Nessler's reagent should be employed. An aliquot of 1-5 ml suffices for the colorimetric determination of phosphorus by the molybdenum method; to reduce the phosphomolybdate complex 2 ml of a 2% SnC12 soln are necessary. Potassium is determined by the cobaltinitrite method after elimination of ammonium salts with the aid of aqua-regia.
Resumo:
1. The appearance of meta-hemoglobin in pneumococcus cultures in blood media must be consequential to the formation of hydogen peroxide, according to the observation of several authors as well as of our own. 2. We emphasize the rôle of mucin in the production of hydrogen peroxide by pneumococcus, a circumstance which has been neglected by the authors who dealt with the matter. 3. In the metabolism of pneumococcus, the existence or formation of mucin is necessary for the maintenance of certain biological properties of the germ. 4. In cultures media containing blood and mucin, the production of meta-hemoglobin by pneumococcus is much larger than in those which contain no mucin. 5. We venture the hypothesis that mucin plays a very important rôle in the implantation of pneumonia, as in the periods preceeding this disease theres is an increase of bronchial secretion, and this secretion is almost entirely constintuted by mucin. 6. Mucin increases the pathogenic power of pneumococcus in mice according to the studies of several authors, which comes to favour our hypothesis.
Resumo:
Peritoneal exudate cells from mice infected with Schistosoma mansoni (S-PEC) can kill schistosomula in vitro in the presence of immune serum. S-PEC produce a low level of respiratory burst, and schistosomula mortality in their presence is not reduced when exogenous antioxidants are added, suggesting that with S-PEC, oxidative killing is not important. Hydrogen peroxide (H2O2) and superoxide production by S-PEC, and cells from BCG and thioglycollate (THGL) injected non-infected mice, non-specifically stimulated with opsonized zymosan, were measured. Levels of H2O2 produced by S-PEC were significantly lower than BCG or THGL PEC, and were below the H2O2 threshold for schistosomula killing. This resulted in lower levels of cell-mediated killing of schistosomula in vitro by S-PEC than by BCG or THGL PEC. Superoxide levels, however, were similar between the three cell populations. The efficiency of PEC to kill schistosomules in vitro correlated with H2O2 rather than superoxide levels. The lower tolerance of schistosomula, compared to adult S. mansoni to GSH depleting agents increases their sensitivity to oxidative attack and resulted in higher levels of cell-mediated killing in vitro.
Resumo:
Four superoxide dismutase (SOD) activities (SOD I, II, III, and IV) have been characterized in the epimastigote form of Trypanosoma cruzi. The total extract was subjected to two successive ammonium sulphate additions between 35 and 85%, and the resulting fraction was purified using two continuous chromatography processes (ion exchange and filtration). Enzymes were insensitive to cyanide but sensitive to hydrogen peroxide, properties characteristic of iron-containing SODs. The molecular masses of the different SODs were 20 kDa (SOD I), 60 kDa (SOD II), 50 kDa (SOD III) and 25 kDa (SOD IV), whereas the isoelectric points were 6.9, 6.8, 5.2 and 3.8, respectively. Subcellular location and digitonin experiments have shown that these SODs are mainly cytosolic, with small amounts in the low-mass organelles (SOD II and SOD I) and the mitochondrion (SOD III), where these enzymes play an important role in minimizing oxidative damage.
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
ABSTRACT A detailed protocol for chemical clearing of bee specimens is presented. Dry specimens as well as those preserved in liquid media can be cleared using this protocol. The procedure consists of a combined use of alkaline solution (KOH or NaOH) and hydrogen peroxide (H2O2), followed by the boiling of the cleared specimens in 60–70% EtOH. Clearing is particularly useful for internal skeletal morphological research. This procedure allows for efficient study of internal projections of the exoskeleton (e.g., apodemes, furcae, phragmata, tentoria, internal ridges and sulci), but this process makes external features of the integument, as some sutures and sulci, readily available for observation as well. Upon completion of the chemical clearing process the specimens can be stored in glycerin. This procedure was developed and evaluated for the preparation of bees and other Apoidea, but modifications for use with other insect taxa should be straightforward after some experimentation on variations of timing of steps, concentration of solutions, temperatures, and the necessity of a given step. Comments on the long-term storage, morphological examination, and photodocumentation of cleared specimens are also provided.