81 resultados para Contraction isométrique
Resumo:
The indan ring system is present in several compounds with important pharmacological properties. In this account recent examples of selected methods (Friedel-Crafts acylation, cycloaddition reactions, ring contraction, cyclization and resolution) for the synthesis of indans are discussed.
Resumo:
L'amitié et l'affinité intellectuelle qui caractérisèrent les rapports de Hobbes avec Gassendi forment un tissu ténu dont il n'est point aisé de démêler la trame. Aux côtés de points de convergence clairement définis, telle la commune aversion envers le dualisme et l'innéisme cartésiens, et par-delà des divergences non moins nettes dans leurs orientations philosophiques particulières, le sens des parcours maintes fois parallèles doit encore être éclairé de façon circonstanciée. Le terrain privilégié sur lequel élever une confrontation étroite entre deux auteurs est sans doute la construction d'une psychologie profondément marquée par des prémisses empiriques et dont l'orientation vise à établir une relation très étroite entre les processus de la perception, du désir (appetitus) et de la volonté avec ce qui les détermine matériellement et mécaniquement. On peut même affirmer que les écrits de Gassendi rédigés au tout début des années 1640 définissent une série d'hypothèses innovatrices sur lesquelles s'inscrit une certaine convergence avec les élaborations de Hobbes à elles contemporaines. Sous ce profil, le groupe de textes remontant aux années 1640-41, et où le philosophe d'Aix s'interroge sur la nature des phénomènes lumineux, est emblématique. L'explication du comportement des corps lumineux en terme de systole et de diastole, l'interprétation de la propagation de la lumière s'inspirant de la pure actualité cinématique (en polémique ouverte et explicite envers les thèses de la Dioptrique de Descartes sur la luminosité comme simple inclinaison au mouvement), le vacuisme (qui est propre à Gassendi, servant justement à rendre compte des phénomènes d'expansion et de contraction des sources lumineuses et qui, à cette époque, n'était pas encore exclu par Hobbes), la représentation, enfin, tout à fait matérielle et mécanique des phénomènes d'irradiation, voilà autant d'aspects de la recherche de Gassendi qui peuvent facilement être confrontés aux écrits de Hobbes.
Resumo:
PURPOSE: To determine anatomical and functional pelvic floor measurements performed with three-dimensional (3-D) endovaginal ultrasonography in asymptomatic nulliparous women without dysfunctions detected in previous dynamic 3-D anorectal ultrasonography (echo defecography) and to demonstrate the interobserver reliability of these measurements. METHODS: Asymptomatic nulliparous volunteers were submitted to echo defecography to identify dynamic dysfunctions, including anatomical (rectocele, intussusceptions, entero/sigmoidocele and perineal descent) and functional changes (non-relaxation or paradoxical contraction of the puborectalis muscle) in the posterior compartment and assessed with regard to the biometric index of levator hiatus, pubovisceral muscle thickness, urethral length, anorectal angle, anorectal junction position and bladder neck position with the 3-D endovaginal ultrasonography. All measurements were compared at rest and during the Valsalva maneuver, and perineal and bladder neck descent was determined. The level of interobserver agreement was evaluated for all measurements. RESULTS: A total of 34 volunteers were assessed by echo defecography and by 3-D endovaginal ultrasonography. Out of these, 20 subjects met the inclusion criteria. The 14 excluded subjects were found to have posterior dynamic dysfunctions. During the Valsalva maneuver, the hiatal area was significantly larger, the urethra was significantly shorter and the anorectal angle was greater. Measurements at rest and during the Valsalva maneuver differed significantly with regard to anorectal junction and bladder neck position. The mean values for normal perineal descent and bladder neck descent were 0.6 cm and 0.5 cm above the symphysis pubis, respectively. The intraclass correlation coefficient ranged from 0.62-0.93. CONCLUSIONS: Functional biometric indexes, normal perineal descent and bladder neck descent values were determined for young asymptomatic nulliparous women with the 3-D endovaginal ultrasonography. The method was found to be reliable to measure pelvic floor structures at rest and during Valsalva, and might therefore be suitable for identifying dysfunctions in symptomatic patients.
Resumo:
Calcium ions (Ca2+) trigger the contraction of vascular myocytes and the level of free intracellular Ca2+ within the myocyte is precisely regulated by sequestration and extrusion mechanisms. Extensive evidence indicates that a defect in the regulation of intracellular Ca2+ plays a role in the augmented vascular reactivity characteristic of clinical and experimental hypertension. For example, arteries from spontaneously hypertensive rats (SHR) have an increased contractile sensitivity to extracellular Ca2+ and intracellular Ca2+ levels are elevated in aortic smooth muscle cells of SHR. We hypothesize that these changes are due to an increase in membrane Ca2+ channel density and possibly function in vascular myocytes from hypertensive animals. Several observations using various experimental approaches support this hypothesis: 1) the contractile activity in response to depolarizing stimuli is increased in arteries from hypertensive animals demonstrating increased voltage-dependent Ca2+ channel activity in hypertension; 2) Ca2+ channel agonists such as Bay K 8644 produce contractions in isolated arterial segments from hypertensive rats and minimal contraction in those from normotensive rats; 3) intracellular Ca2+ concentration is abnormally increased in vascular myocytes from hypertensive animals following treatment with Ca2+ channel agonists and depolarizing interventions, and 4) using the voltage-clamp technique, the inward Ca2+ current in arterial myocytes from hypertensive rats is nearly twice as large as that from myocytes of normotensive rats. We suggest that an alteration in Ca2+ channel function and/or an increase in Ca2+ channel density, resulting from increased channel synthesis or reduced turnover, underlies the increased vascular reactivity characteristic of hypertension
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
We investigated the effects of piperitenone oxide (PO), a major constituent of the essential oil of Mentha x villosa, on the guinea pig ileum. PO (30 to 740 µg/ml) relaxed basal tonus without significantly altering the resting membrane potential. In addition, PO relaxed preparations precontracted with either 60 mM K+ or 5 mM tetraethylammonium in a concentration-dependent manner. At concentrations from 0.1 to 10 µg/ml PO potentiated acetylcholine-induced contractions, while higher concentrations (>30 µg/ml) blocked this response. These higher PO concentrations also inhibited contractions induced by 60 mM K+. PO also blocked the components of acetylcholine contraction which are not sensitive to nifedipine or to solutions with nominal zero Ca2+ and EGTA. These results show that PO is a relaxant of intestinal smooth muscle and suggest that this activity may be mediated at least in part by an intracellular effect
Resumo:
The presence of inhibitory nonadrenergic noncholinergic (NANC) intrinsic innervation of the circular muscle of the gastrointestinal sphincters of the South American (SA) opossum was investigated in vitro. Isolated circular muscle strips from the esophagogastric and ileocolonic junctions but not from the gastroduodenal (pylorus) region developed spontaneous tension. Tetrodotoxin (TTX, 1 µM) augmented the spontaneous tension only in the ileocolonic junction strips. Electrical field stimulation of esophagogastric and ileocolonic junction strips caused frequency-dependent responses consisting of a relaxation at lower frequencies (<1 Hz) and a biphasic response or contraction at higher frequencies. In the strips from the pyloric region electrical field stimulation abolished the spontaneous activity at lower frequencies and induced contractions at higher frequencies. The responses elicited by electrical field stimulation in the three sphincters were abolished by TTX (1 µM). Electrical field-induced contractions were reduced while relaxations were enhanced by atropine (1 µM). In the presence of atropine (1 µM) and guanethidine (3 µM), electrical field stimulation, nicotine and ATP induced frequency- or concentration-dependent relaxations of the three sphincters that were abolished by TTX (1 µM). Isoproterenol and sodium nitroprusside caused concentration-dependent relaxations which were TTX-resistant. These findings indicate that the sphincteric circular muscle of the SA opossum gastrointestinal tract is relaxed by the activation of intrinsic NANC nerves and therefore can be used as a model for the study of the mechanisms involved in these responses
Resumo:
There is increasing evidence that angiotensin-(1-7) (Ang-(1-7)) is an endogenous biologically active component of the renin-angiotensin system (RAS). In the present study, we investigated the effects of Ang-(1-7) on reperfusion arrhythmias in isolated rat hearts. Isolated rat hearts were perfused with two different media, i.e., Krebs-Ringer (2.52 mM CaCl2) and low-Ca2+ Krebs-Ringer (1.12 mM CaCl2). In hearts perfused with Krebs-Ringer, Ang-(1-7) produced a concentration-dependent (27-210 nM) reduction in coronary flow (25% reduction at highest concentration), while only slight and variable changes in contraction force and heart rate were observed. Under the same conditions, angiotensin II (Ang II; 27 and 70 nM) produced a significant reduction in coronary flow (39% and 48%, respectively) associated with a significant increase in force. A decrease in heart rate was also observed. In low-Ca2+ Krebs-Ringer solution, perfusion with Ang-(1-7) or Ang II at 27 nM concentration produced similar changes in coronary flow, contraction force and heart rate. In isolated hearts perfused with normal Krebs-Ringer, Ang-(1-7) produced a significant enhancement of reperfusion arrhythmias revealed by an increase in the incidence and duration of ventricular tachycardia and ventricular fibrillation (more than 30-min duration). The facilitation of reperfusion arrhythmias by Ang-(1-7) was associated with an increase in the magnitude of the decreased force usually observed during the post-ischemic period. The effects of Ang-(1-7) were abolished in isolated rat hearts perfused with low-Ca2+ Krebs-Ringer. The effect of Ang II (27 nM) was similar but less pronounced than that of Ang-(1-7) at the same concentration. These results indicate that the heart is a site of action for Ang-(1-7) and suggest that this heptapeptide may be involved in the mediation of the cardiac effects of the RAS
Resumo:
Previous data from our laboratory have indicated that nitric oxide (NO) acting at the presynaptic level increases the amplitude of muscular contraction (AMC) of the phrenic-diaphragm preparations isolated from indirectly stimulated rats, but, by acting at the postsynaptic level, it reduces the AMC when the preparations are directly stimulated. In the present study we investigated the effects induced by NO when tetanic frequencies of stimulation were applied to in vivo preparations (sciatic nerve-anterior tibial muscle of the cat). Intra-arterial injection of NO (0.75-1.5 mg/kg) induced a dose-dependent increase in the Wedensky inhibition produced by high frequencies of stimulation applied to the motor nerve. Intra-arterial administration of 7.2 µg/kg methylene blue did not produce any change in AMC at low frequencies of nerve stimulation (0.2 Hz), but antagonized the NO-induced Wedensky inhibition. The experimental data suggest that NO-induced Wedensky inhibition may be mediated by the guanylate cyclase-cGMP pathway
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.
Resumo:
The purpose of the present study was to examine the relationship between the electromyographic (EMG) activity and heart rate (HR) responses induced by isometric exercise performed by knee extension (KE) and flexion (KF) in men. Fifteen healthy male subjects, 21 ± 1.3 years (mean ± SD), were submitted to KE and KF isometric exercise tests at 100% of maximal voluntary contraction (MVC). The exercises were performed with one leg (right or left) and with two legs simultaneously, for 10 s in the sitting position with the hip and knee flexed at 90o. EMG activity (root mean square values) and HR (beats/min) were recorded simultaneously both at rest and throughout the sustained contraction. The HR responses to isometric exercise in KE and KF were similar when performed with one and two legs. However, the HR increase was always significantly higher in KE than KF (P<0.05), whereas the EMG activity was higher in KE than in KF (P<0.05), regardless of the muscle mass (one or two legs) involved in the effort. The correlation coefficients between HR response and the EMG activity during KE (r = 0.33, P>0.05) and KF (r = 0.15, P>0.05) contractions were not significant. These results suggest that the predominant mechanism responsible for the larger increase in HR response to KE as compared to KF in our study could be dependent on qualitative and quantitative differences in the fiber type composition found in each muscle group. This mechanism seems to demand a higher activation of motor units with a corresponding increase in central command to the cardiovascular centers that modulate HR control.
Resumo:
Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.
Resumo:
High magnesium concentration inhibits the effect of arginine vasopressin (AVP) on smooth muscle contraction and platelet aggregation and also influences hepatocyte AVP receptor binding. The aim of this study was to determine the role of magnesium concentration [Mg2+] in AVP-stimulated water transport in the kidney collecting duct. The effect of low and high peritubular [Mg2+] on the AVP-stimulated osmotic water permeability coefficient (Pf) was evaluated in the isolated perfused rabbit cortical collecting duct (CCD). Control tubules bathed and perfused with standard Ringer bicarbonate solution containing 1 mM Mg2+ presented a Pf of 223.9 ± 27.2 µm/s. When Mg2+ was not added to the bathing solution, an increase in the AVP-stimulated Pf to 363.1 ± 57.2 µm/s (P<0.05) was observed. An elevation of Mg2+ to 5 mM resulted in a decrease in Pf to 202.9 ± 12.6 µm/s (P<0.05). This decrease in the AVP-stimulated Pf at 5 mM Mg2+ persisted when the CCDs were returned to 1 mM Mg2+, Pf = 130.2 ± 20.3 µm/s, and was not normalized by the addition of 8-[4-chlorophenylthio]-adenosine 3',5'-cyclic monophosphate, a cAMP analogue, to the preparation. These data indicate that magnesium may play a modulatory role in the action of AVP on CCD osmotic water permeability, as observed in other tissues.
Resumo:
Cardiac surgery involving ischemic arrest and extracorporeal circulation is often associated with alterations in vascular reactivity and permeability due to changes in the expression and activity of isoforms of nitric oxide synthase and cyclooxygenase. These inflammatory changes may manifest as systemic hypotension, coronary spasm or contraction, myocardial failure, and dysfunction of the lungs, gut, brain and other organs. In addition, endothelial dysfunction may increase the occurrence of late cardiac events such as graft thrombosis and myocardial infarction. These vascular changes may lead to increased mortality and morbidity and markedly lengthen the time of hospitalization and cost of cardiac surgery. Developing a better understanding of the vascular changes operating through nitric oxide synthase and cyclooxygenase may improve the care and help decrease the cost of cardiovascular operations.
Resumo:
The role gap junction channels play in the normal and abnormal functioning of the vascular wall is the subject of much research. The biophysical properties of gap junctions are an essential component in understanding how gap junctions function to allow coordinated relaxation and contraction of vascular smooth muscle. This study reviews the properties thus far elucidated and relates those properties to tissue function. We ask how biophysical and structural properties such as gating, permselectivity, subconductive states and channel type (heteromeric vs homotypic vs heterotypic) might affect vascular smooth muscle tone.