38 resultados para Computational modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular basis of modern therapeutics consist in the modulation of cell function by the interaction of microbioactive molecules as drug cells macromolecules structures. Molecular modeling is a computational technique developed to access the chemical structure. This methodology, by means of the molecular similarity and complementary paradigm, is the basis for the computer-assisted drug design universally employed in pharmaceutical research laboratories to obtain more efficient, more selective, and safer drugs. In this work, we discuss some methods for molecular modeling and some approaches to evaluate new bioactive structures in development by our research group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations have been carried out on the bromate - oxalic acid - Ce(IV) - acetone oscillating reaction, under flow conditions, using Field and Boyd's model (J. Phys. Chem. 1985, 89, 3707). Many different complex dynamic behaviors were found, including simple periodic oscillations, complex periodic oscillations, quasiperiodicity and chaos. Some of these complex oscillations can be understood as belonging to a Farey sequence. The many different behaviors were systematized in a phase diagram which shows that some regions of complex patterns were nested with one inside the other. The existence of almost all known dynamic behavior for this system allows the suggestion that it can be used as a model for some very complex phenomena that occur in biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OH LIF-thermometry was applied to premixed ethanol flames at atmospheric pressure in a burner for three flame conditions. Flame temperatures were simulated from energy equation with PREMIX code of CHEMKIN software package for comparison. A kinetic modeling based on a model validated through chemiluminescence measurements and on a set of reactions for nitrogen chemistry was evaluated. Marinov's mechanism was also tested. Sensitivity analysis was performed for fuel-rich flame condition with Φ = 1.34. Simulated temperatures from both reaction mechanisms evaluated were higher than experimental values. However, the proposed kinetic modeling resulted in temperature profiles qualitatively very close to the experimental.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is proposed for explaining one of the central questions in the teaching of general chemistry courses to freshman students: why do chemical transformations occur? The answer to this question is based on thermodynamics but we propose arriving at an answer in a more intuitive way by using computational tools in a bid to increase the motivation of students for learning chemistry.