41 resultados para Circle Packing
Resumo:
Damage control surgery is one of the major advances in surgical practice in the last 20 years. The indications for damage control surgery are: the need to terminate a laparotomy rapidly in an exsanguinating, hypothermic patient who had developed a coagulopathy and who is about to die on the operating table; inability to control bleeding by direct hemostasis; and inability to close the abdomen without tension because of massive visceral edema and a tense abdominal wall. Damage control surgery has three phases: 1) laparotomy to control hemorrhage by packing, shunting, or balloon tamponade, or both; control of intestinal spillage by resection or ligation of damaged bowel, or both; 2) physiological resuscitation to correct hypothermia, metabolic acidosis, and coagulopathy. 3) planned reoperation for definitive repair. Damage control surgery is appropriate in a small number of critically ill patients who are likely to require substantial hospital resources. However, there are many questions that need to be answered. Who is the patient elected for this surgery? When is the ideal time to make the decision? Which are the parameters that indicate to the surgeons the moment to re-operate the patient? How to treat the long-term complications? In the present review we described some historical aspects, indications, technical aspects, advantages and disadvantages of this procedure, as well as its physiological consequences and morbidity and mortality rates of damage control surgery. Damage control surgery offers a simple effective alternative to the traditional surgical management of complex or multiple injuries in critically injured patients.
Resumo:
Thirty heads with neck segments of turkeys (Meleagris gallopavo) were dissected for a systematic study of the arteries. The frequency of the arteries found was: Cerebral carotid artery, intercarotid anastomosis and internal ophthalmic artery (100%). Caudal branch of the cerebral carotid artery to the right (R) vestigial artery (70%) and developed (30%) and to the left (L) developed (70%) and vestigial artery (30%). Ventral tectal mesencephalic artery in (70%) to R and (30%) to L was the direct branch of the cerebral carotid artery to L (70%) and to R (30%) collateral branch of the developed caudal branch. Basilar artery to L in (70%) and to R (30%) formed from the developed caudal branch; rostral ventral cerebellar artery present (86.7%) and absent (13.3%) to R and L. Caudal ventral cerebellar artery to R single (73.3%), double (23.3%) and triple (3.3%); caudal ventral cerebellar artery to L single (73.3%) and double (26.7%). Dorsal spinal artery branch of caudal ventral cerebellar artery to R (80%) and to L (73.3%). The rostral branch of cerebral carotid artery showed as collateral branches the single caudal cerebral artery to R (100%) and to L (96.7%) while in (3.3%) it was double. The middle cerebral artery was single to R and L (100%). Cerebroethmoidal artery to R and L (100%) with its collateral branch to single rostral cerebral artery (90%) to R and (86.7%) to L and double (10%) to R and (13.3%) to L. Ethmoidal artery to R and to L (100%) single. The cerebral arterial circle was rostrally and caudally opened, so that the cerebral blood supply was exclusively made by the carotid system.
Resumo:
The brains of 30 New Zealand rabbits (Oryctolagus cuniculus) were injected with red stained latex. The arteries of the ventral surface of the brain were systematized on the right (R) and on the left (L) side with the respective percentage of appearance: the aortic arch emitted the braquicephalic trunk and the left subclavian artery (83.3%); or the braquicephalic trunk, the left common carotid artery and the left subclavian artery (16.7%). The braquicephalic trunk emitted the right and the left common carotid arteries and the right subclavian artery (83.3%); or the right common carotid artery and the right subclavian artery (16.7%). The common carotid arteries were divided into external and internal carotid arteries (96.7% on the R, 100% on the L.). The internal carotid artery to the R was present (96.7%) and absent (3.3%), and to the L, was present (100%). The rostral choroidal artery to the R was collateral branch of the rostral branch of the internal carotid artery (83.3%), collateral branch of caudal branch of the internal carotid artery (16.7%), and to the L was collateral branch of the rostral branch of the internal carotid artery (93.3%), collateral branch of the caudal branch of the internal carotid artery (6.7%). The middle cerebral artery to the R and to the L was single (80%) and double (20%). The rostral cerebral artery to the R had middle caliber (90%), thin caliber (6.7%) and too thin caliber (3.3%), and to the L had middle caliber (76.7%), thin caliber (16.7%) and too thin caliber (6.7%). The internal ethmoidal artery was absent (73.3%), present and single (26.7%). The caudal cerebral artery to the R was single (66.7%), double (26.7%) and triple (6.7%), and to the L was single (63.3%) and double (36.7%). The terminal branches of the right and left vertebral arteries were present (100%, and formed the basilar artery (100%). The ventral spinal artery was present (100%). The caudal cerebellar artery, to the R was single (43.3%), single with labyrinthic artery isolated (26.7%) and double (30%), and to the L was single (50%), single with labyrinthic artery isolated (6.7%), double (40%) and triple (3.3%). The trigeminal artery to the R and to the L was present (100%). The rostral cerebellar artery to the R was single (53.3%) and double (46,7%), and to the L was single (63.3%) and double (36.7%). The rabbit's cerebral arterial circle was caudally closed (100%) and rostrally closed (93.3%) or opened (6.7%). The brain was supplied by the vertebral-basilar and carotid systems.
Resumo:
In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension.
Resumo:
Weeds have a negative influence on several fruit tree characteristics, such as yield, making it difficult to management practices in orchards. Alternative weed management methods, aiming to reduce the use of herbicides, have become attractive since herbicides are costly and cause environmental degradation. The use of cultivars with greater competitive ability against weeds has attracted international attention. The objective of this work was to evaluate the floristic composition and growth of weeds under the canopies of irrigated custard apple tree progenies. Twenty halfsibling progenies around three years of age were evaluated in a random block design with five replicates and four plants per plot. A circle with a 0.5 m² area was established around the trunk of each plant. Floristic composition, fresh matter, and dry matter mass of the above-ground part of the weeds, were evaluated in this area. Root collar and canopy diameters, as well as leaf area of the progenies were also evaluated. Fifty-eight weed species were recorded. The five weed families with the most species were Leguminosae, Convolvulaceae, Euphorbiaceae, Malvaceae and Sterculiaceae, in decreasing order. The number of weed species per plot ranged from 6 to 18, but there was no difference between the mean percentages of different weeds under the canopies of the progenies. The lowest weed fresh and dry matter masses occurred in progenies JG1 and SM8, respectively. There were no differences between progenies with regard to root collar diameter and leaf area; however, one of the lowest weed dry matter yields was observed under the canopy of progeny FE4, which showed the largest canopy diameter.
Resumo:
The objectives of this work were to evaluate the floristic composition and dry biomass of weeds under the canopy of seven perennial species adapted to the Semi-Arid region of Brazil, and correlate these characteristics with growth traits of the perennial species. The following perennial species were evaluated in two experiments (E1 and E2): mesquite (Prosopis juliflora), jucá (Caesalpinia ferrea), white popinac (Leucaena leucocephala), mofumbo (Combretum leprosum), neem (Azadirachata indica), sabiá (Mimosa caesalpiniaefolia) and tamarind (Tamarindus indica). In E1, the seven species were evaluated in a random block design with four replicates and nine plants per plot. In E2, evaluation comprised four species (mesquite, jucá, white popinac, and tamarind) in a random block design with eight replicates and nine plants per plot. A circle with an area of 1.77 m² was established around the trunk of each plant, two years after they were transplanted to the permanent location. The weeds collected within this circle were cut even with the ground, classified and weighed. At this time, plant height, and crown and stem diameters were evaluated in all trees of each plot. In E1 there were no differences between tree species as to weed frequency under their canopies; however, weed growth was smaller under the canopy of sabiá trees. Mesquite and sabiá had the greatest plant height and crown diameter means, but only sabiá had the greatest stem diameter. In E2, the perennial species were not different with regard to weed frequency and growth under their canopies, but mesquite had the greatest growth, as measured by plant height (with significant results for jucá as well) and crown and stem diameter.
Resumo:
The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein), integral (Folch-Lees proteolipid protein) and amphitropic (c-Fos and c-Jun) proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase), in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
Modified atmosphere is a method of food preservation that provides increased lifetime, decreases deterioration losses, and facilitates marketing. The objective of this study was to evaluate the efficiency of different plastic films in modifying the atmosphere around Eva apples to assure quality maintenance during postharvest storage. The fruits were cleaned and separated into three treatment groups: polypropylene, low density polyethylene, and high density polyethylene packing with a total of 5 fruits per package for each evaluation period. A group of control apples was not submitted to atmospheric modification. After the treatment, all fruits were stored at 0.5±0.5°C (cold storage) for up to 225 days. The analyses were performed at 45, 135, and 225 days after cold storage. Respiration, ethylene production, firmness, mass loss, total pectin, soluble pectin, soluble solids, total acidity, and epidermis background color of each treatment group were evaluated. The high density polyethylene film treatment did not show a decrease in ethylene production during storage and allowed the fruits to maintain a greater firmness and smaller percentage of mass loss during the study period. Moreover, the storage of the Eva apple cultivar under modified atmosphere allowed the preservation of quality for up to seven months.
Resumo:
Covering the grapevine rows to delay the maturity and harvest date became widely practiced in 'Sultana Seedless' vineyards. The research work was conducted to test different cover materials (polypropylene cross-stitch, life pack, mogul and transparent polyethylene) in respect to their effects on grape quality and storability. Harvest was delayed for one month in covered plots. Harvested grapes were packed and transferred to storage rooms after pre-cooling. During packing, the grape clusters were sealed in PE bags with sulphur dioxide pads. The grapes were stored for 90 days in the first year and 120 days in the second year, at -0.5ºC and 90% RH. All the grape clusters were healthy and of marketable quality after 90 days of storage period. In the first year, at the end of the storage, only those grapes harvested from the rows covered with polypropylene cross-stitch showed fungal growth. The sensory quality scores revealed a lower level of preference after 120 days of storage. The effects of the covering materials tested were similar regarding grape quality and storage performance except the transparent polyethylene that damaged the grapevine leaves.
Resumo:
Rancidity development during frozen storage (–20 °C) of sierra fish (Scomberomorus sierra) was studied. Fillets were packed in low-density polyethylene films with and without butylated hydroxytoluene added (BHT-LDPE and LDPE respectively). Fillets stored with no package were used as control. Special attention was given to the effect of previous ice storage (0, 3, 6, 9 and 15 days) on the quality of the frozen fish. Physical (pH and texture) and chemical (peroxide value, PV and thiobarbituric acid index, TBA-i) analyses were carried out. Lipid oxidation increased with ice storage time in fish muscle without film packing, being greater than the film packed muscle (with and without antioxidant). An effect of previous ice storage time was observed on the frozen product (in all treatments). However, fish muscle with film packing containing antioxidant showed less lipid deterioration. Under the conditions applied in this study, the plastic films with antioxidant prevented the lipids oxidation during the cold handling of the sierra muscle.