65 resultados para Chick Embryonic Kinase
Resumo:
The calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV) have been extensively studied over the last decade since they appear to be important as buffers of intracellular calcium. In the present study we investigated the distribution of these proteins in the chick visual system by means of conventional immunocytochemistry. The results indicated that CB, CR, and PV are widely distributed in retinorecipient areas of the chick brain. In some regions, all three calcium-binding proteins were present at different intensities and often in different neurons such as in the dorsolateral thalamic complex. In other areas, such as the nucleus geniculatus lateralis ventralis, only CB and CR were detected, whereas PV was absent. These results show that these three calcium-binding proteins are differentially distributed in the visual system of the chick, with varying degrees of co-localization
Resumo:
Insulin induces tyrosine phosphorylation of Shc in cell cultures and in insulin-sensitive tissues of the intact rat. However, the ability of insulin receptor (IR) tyrosine kinase to phosphorylate Shc has not been previously demonstrated. In the present study, we investigated insulin-induced IR tyrosine kinase activity towards Shc. Insulin receptor was immunoprecipitated from liver extracts, before and after a very low dose of insulin into the portal vein, and incubated with immunopurified Shc from liver of untreated rats. The kinase assay was performed in vitro in the presence of exogenous ATP and the phosphorylation level was quantified by immunoblotting with antiphosphotyrosine antibody. The results demonstrate that Shc interacted with insulin receptor after infusion of insulin, and, more important, there was insulin receptor kinase activity towards immunopurified Shc. The description of this pathway in animal tissue may have an important role in insulin receptor tyrosine kinase activity toward mitogenic transduction pathways.
Resumo:
TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.
Resumo:
The carboxyl-terminal (CT) domain of connexin43 (Cx43) has been implicated in both hormonal and pH-dependent gating of the gap junction channel. An in vitro assay was utilized to determine whether the acidification of cell extracts results in the activation of a protein kinase that can phosphorylate the CT domain. A glutathione S-transferase (GST)-fusion protein was bound to Sephadex beads and used as a target for protein kinase phosphorylation. A protein extract produced from sheep heart was allowed to bind to the fusion protein-coated beads. The bound proteins were washed and then incubated with 32P-ATP. Phosphorylation was assessed after the proteins were resolved by SDS-PAGE. Incubation at pH 7.5 resulted in a minimal amount of phosphorylation while incubation at pH 6.5 resulted in significant phosphorylation reaction. Maximal activity was achieved when both the binding and kinase reactions were performed at pH 6.5. The protein kinase activity was stronger when the incubations were performed with manganese rather than magnesium. Mutants of Cx43 which lack the serines between amino acids 364-374 could not be phosphorylated in the in vitro kinase reaction, indicating that this is a likely target of this reaction. These results indicate that there is a protein kinase activity in cells that becomes more active at lower pH and can phosphorylate Cx43.
Resumo:
In this study we characterize the presence of muscarinic acetylcholine receptors (mAChR) in the isthmo-optic nucleus (ION) of chicks by immunohistochemistry with the M35 antibody. Some M35-immunoreactive fibers were observed emerging from the retinal optic nerve insertion, suggesting that they could be centrifugal fibers. Indeed, intraocular injections of cholera toxin B (CTb), a retrograde tracer, and double-labeling with M35 and CTb in the ION confirmed this hypothesis. The presence of M35-immunoreactive cells and the possible mAChR expression in ION and ectopic neuron cells in the chick brain strongly suggest the existence of such a cholinergic system in this nucleus and that acetylcholine release from amacrine cells may mediate interactions between retinal cells and ION terminals.
Resumo:
Chick cardiomyocytes, when submitted to hyposmotic swelling, exhibit a partial regulatory volume decrease (RVD). A Ca2+ influx by stretch-activated channels signals a taurine efflux and the RVD at 37°C. We evaluated the cell's performance at room temperature. Cardiomyocytes isolated and cultured from 11-day-old chick embryos were submitted to a hyposmotic solution (180 mOsm/kg H2O) at 37°C and at room temperature (26°C). Under these conditions we measured the changes in cell volume as well as the intracellular free Ca2+ (using fura-2). During hyposmotic swelling, cells at 37°C displayed a peak relative volume of 1.61 ± 0.03 and recovery to 1.22 ± 0.04 (N = 14), while cells at 26°C presented a peak swell relative volume of 1.74 ± 0.06 and did not recover (1.59 ± 0.09, N = 9). Transient increases in intracellular Ca2+, which are characteristic of the normal RVD, were observed at both temperatures (29.1 ± 4.5% (N = 8) and 115.2 ± 42.8% (N = 5) increase at 37° and 26°C (P<0.05), respectively). A delay in the Ca2+ transient increase was also observed when the cells were at 26°C (109 ± 34 s compared to 38 ± 9 s at 37°C, P<0.05). At room temperature the RVD does not occur because the calcium transient increase, which is an early event in the signaling of the RVD, is delayed. Also, free calcium is not cleared as in the 37°C RVD. In the normal RVD the free calcium returns to baseline levels. The very high and persistent free calcium levels seen at room temperature can lead to unregulated enzyme activities and may promote irreversible injury and cell death.
Resumo:
Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.
Resumo:
Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.
Resumo:
Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.
Resumo:
The effect of dose and volume of a perimuscular injection of Bothrops jararacussu venom on myonecrosis of skeletal muscle was studied in mice. An increase of the venom dose (0.25 to 2.0 µg/g) at a given volume (50 µl) resulted in an increase in plasma creatine kinase (CK) levels 2 h after injection. Plasma CK activity increased from the basal level of 129.27 ± 11.83 (N = 20) to 2392.80 ± 709.43 IU/l (N = 4) for the 1.0 µg/g dose. Histological analysis of extensor digitorum longus muscle 4 h after injection showed lesion of peripheral muscle fibers, disorganization of the bundles or the complete degeneration of muscle fibers. These lesions were more extensive when higher doses were injected. Furthermore, an increase in volume (12.5 to 100 µl) by dilution of a given dose (0.5 µg/g) also increased plasma CK levels from 482.31 ± 122.79 to 919.07 ± 133.33 IU/l (N = 4), respectively. These results indicate that care should be taken to standardize volumes and sites of venom injections.
Resumo:
Apoptosis and necrosis are two distinct forms of cell death that can occur in response to different agents and stress conditions. In order to verify if the oxidative stress induced by dietary selenium and vitamin E deficiencies can lead muscle cells to apoptosis, one-day-old chicks were reared using diets differing in their vitamin E (0 or 10 IU/kg) and selenium (0 or 0.15 ppm) supplementation. Chick skeletal muscle tissue was obtained from 28-day-old animals and used to verify apoptosis occurrence based on caspase activity detection and DNA fragmentation. Antioxidant deficiency significantly increased caspase-like activity assessed by the hydrolysis of fluorogenic peptide substrates (Abz-peptidyl-EDDnp) at lambdaexc = 320 nm and lambdaem = 420 nm. Proteolytic activation was not accompanied by typical internucleosomal DNA fragmentation detected by field inversion gel electrophoresis. Although the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk) (0 to 80 muM) did not block caspase-like activity when preincubated for 30 min with muscle homogenates, the hydrolyzed substrates presented the same cleavage profile in HPLC (at the aspartic acid residue) when incubated with the purified recombinant enzyme caspase-3. These data indicate that oxidative stress causes caspase-like activation in muscle cells and suggest that cell death associated with exudative diathesis (dietary deficiency of selenium and vitamin E) can follow the apoptotic pathway.
Resumo:
Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%), staurosporine (1 µM - 58%), R03 (1 µM - 75%), and tyrphostins B44 (100 µM - 66%) and B46 (100 µM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.
Resumo:
8-Methoxy psoralen (8-MOP) exerts a short-term (24 h) mitogenic action, and a long-term (48-72 h) anti-proliferative and melanogenic action on two human melanoma cell lines, SK-Mel 28 and C32TG. An increase of intracellular calcium concentration was observed by spectrofluorometry immediately after the addition of 0.1 mM 8-MOP to both cell lines, previously incubated with calcium probe fluo-3 AM (5 µM). The intracellular Ca2+ chelator BAPTA/AM (1 µM) blocked both early (mitogenic) and late (anti-proliferative and melanogenic) 8-MOP effects on both cell lines, thus revealing the importance of the calcium signal in both short- and long-term 8-MOP-evoked responses. Long-term biological assays with 5 and 10 mM tetraethylammonium chloride (TEA, an inhibitor of Ca2+-dependent K+ channels) did not affect the responses to psoralen; however, in 24-h assays 10 mM TEA blocked the proliferative peak, indicating a modulation of Ca2+-dependent K+ channels by 8-MOP. No alteration of cAMP basal levels or forskolin-stimulated cAMP levels was promoted by 8-MOP in SK-Mel 28 cells, as determined by radioimmunoassay. However, in C32TG cells forskolin-stimulated cAMP levels were further increased in the presence of 8-MOP. In addition, assays with 1 µM protein kinase C and calcium/calmodulin-dependent kinase inhibitors, Ro 31-8220 and KN-93, respectively, excluded the participation of these kinases in the responses evoked by 8-MOP. Western blot with antibodies anti-phosphotyrosine indicated a 92% increase of the phosphorylated state of a 43-kDa band, suggesting that the phosphorylation of this protein is a component of the cascade that leads to the increase of tyrosinase activity.
Resumo:
We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.
Resumo:
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 ± 393 cells/mm²) compared to control (1886 ± 892 cells/mm²; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm² (2 µg/g) and 845 ± 82 cells/mm² (6 µg/g), also lower than control (1312 ± 31 cells/mm²; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.