93 resultados para Chemical Characterization
Resumo:
The yields and chemical compositions of the essential oils obtained by steam distillation of the fresh and dried (30 and 40 ºC) leaves, stems and roots of Tanaecium nocturnum are reported. The identification and quantification of the volatile constituents were accomplished by GC/MS and GC/FID, respectively. The essential oils obtained from the various parts of the plant were constituted mainly of benzaldehyde. Large losses and variations in the quantities of the components during the drying process were observed. The presence of mandelonitrile in higher concentration in the stem and roots indicates that this species produces cyanogenic glycosides.
Resumo:
This paper presents the analytical application of a novel electronic tongue based on voltammetric sensors array. This device was used in the classification of wines aged in barrels of different origins and toasting levels. Furthermore, a study of correlation between the response of the electronic tongue and the sensory and chemical characterization of samples was carried out. The results were evaluated by applying both principal component analysis and cluster analysis. The samples were clearly classified. Their distribution showed a high correspondence degree with the characteristics of the analyzed wines, it also showed similarity with the classification obtained from organoleptic analysis.
Resumo:
There are many controversies regarding the cyto- and genotoxicity of carbon nanotubes (CNTs). In this work, we discuss that many of the incongruous arguments are probably associated with the poor physical-chemical characterization of the CNT samples used in many publications. This manuscript presents examples of carbon nanostructures observed under high resolution electron microscopy that can be found in typical CNT samples, and shows which roles in cyto- and genotoxicity need to be better investigated. Issues concerning chemical treatment are addressed and examples of misunderstandings that can occur during the studies of cyto- and genotoxicity of CNT samples are given.
Resumo:
In recent years, the introduction of the Green Chemistry concepts in undergraduate chemistry classes has been intensively pursued. In this regard, the two-step preparation of Epoxone (an organocatalyst developed by Shi & col.) from commercial D-fructose, through ketalization of vicinal diols followed by oxidation of a sterically congested secondary alcohol, involves important topics in Organic Chemistry and employs inexpensive and nontoxic reagents. The reactions are easy to perform and the products from both steps are readily obtained as crystalline solids after simple procedures, thus facilitating their chemical characterization.
Resumo:
The marine diatom Coscinodiscus wailesii has attracted ecological interest because their blooms affect fishing areas. The aim of this work was the isolation, extraction and partial chemical characterization of soluble exopolysaccharide and bound exopolysaccharide from C. wailesii. Cultures were grown in Guillards f/2 medium under controlled conditions of temperature, aeration, photoperiod and light intensity. Percentage of carbohydrate, uronic acids, sulfates groups and cellular lipids was determined. Ion exchange chromatography of exopolysaccharides produced three fractions whose partial chemical structures were disclosed using 13C NMR and methylation techniques.
Resumo:
This work reports the chemical characterization of Eremanthusgoyzensis essential oil and its toxic effect over Brevipalpus phoenicis. The essential oil displayed a major composition of sesquiterpenes (61.87%) including trans-caryophillene (26.81%) and germacrene-D (13.31%). The fumigation test indicated a promising bioactivity over adult B. phoenicis individuals at 24 h (2.03 µL/L of air) and 48 h (1.08 µL/L of air) of exposition. A brief discussion of essential oils composition and their singular role on the toxic effect over B. phoenicis is provided here. Our results may contribute to a new and profitable use of a species of Brazilian flora on agribusiness.
Resumo:
In this work, the preparation and characterization of materials such as zirconium oxide (ZrO2) and phosphotungstic acid promoted zirconium oxide (ZrO2-H3PW12O40) is presented. Physico-chemical characterization results showed that addition of H3PW12O40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO2 matrix delayed the sintering of the material and stabilized ZrO2 in the tetragonal phase. ZrO2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO2-H3PW12O40 catalyst was active for n-pentane isomerization at 250 °C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity.
Resumo:
The sugarcane industry has huge potential for biorefinery concept application, given its development in recent years. In this context, cane sugar straw has become an attractive raw material for biofuel production. This study aims to investigate the chemical composition of cane sugar straw from different regions of Brazil, and to optimize a hydrothermal pretreatment stage for cellulosic ethanol production. Results of chemical characterization of the cane sugar straw for the regions assessed indicated little influence of place on straw chemical composition. Hydrothermal pretreatment showed high efficiency in hemicellulose removal. Hydrothermal pretreatments operating with temperatures of 190 and 210 ºC presented satisfactory results, reaching values close to 100% hydrolysis.
Resumo:
Screening of biomass of a new marine-derived strain of Penicillium roqueforti, as produced by liquid-state fermentation, led to the identification of several volatile organic compounds active in the fatty acid pathway as well as fragments produced by their catabolism, terpenoids, and metabolites from the shikimic acid pathway. In addition, five non-volatile organic compounds, triolein, ergosterol peroxide, 9(11)-dehydroergosterol peroxide, 4-hydroxybenzaldehyde, and d-mannitol, were isolated and identified by spectroscopy. The results showed that this fungal strain did not produce any mycotoxin in the culture conditions applied, and thus is useful for industrial applications, where high value-added biomolecules are generated.
Resumo:
Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.
Resumo:
The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.
Characterization of soil chemical properties of strawberry fields using principal component analysis
Resumo:
One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS) is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA). Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM), soil total nitrogen (N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg), soil pH (pH), cation exchange capacity (CEC) at pH 7.0, soil base (V%) and soil aluminum saturation(m%). No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.
Resumo:
Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR) spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure). All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.
Resumo:
Four formulations of mixed açaí (Euterpe oleracea) (A) and cocoa´s honey (Theobroma cacao) (CH) jellies were prepared according to the following proportions: T1 (40% A:60% CH), T2 (50% A:50% CH), T3 (60% A: 40% CH) and T4 (100% A - control). All formulations were prepared using a rate 60:40 (w/w) of sucrose and pulp, plus 0.5% pectin and the products reached to average of 65% soluble solids content. The jellies were analyzed by chemical and physicochemical (titratable acidity, pH, soluble solid content, dry matter, total protein, lipids, vitamin C and calories) and sensory characteristics; also were evaluated levels of P, K, Ca, Mg, Fe, Zn, Cu and Mn. It was used a hedonic scale of 7 points to evaluate the attributes: overall impression, spreadability, brightness, flavor, texture and color, and also was verified the purchase intention score. The titratable acidity and pH ranged from 0.46 to 0.64% and 3.35 to 3.64, respectively, that are within the range found at most fruit jellies. The soluble solids content ranged between 65.2 and 65.5 ºBrix. The sensory acceptance results showed that all treatments (T1, T2, T3 and T4) presented means of sensory attributes above 4, demonstrating good acceptance of the product, but the treatment T1 presented the higher scores for the evaluated attributes. Cocoa´s honey added a positive influence on the attributes of color, texture and spreadability.
Resumo:
The objective of this study was to characterize the chemical composition of the essential oil from the leaves of Annona emarginata (Schltdl.) H. Rainer 'terra-fria' and Annona squamosa L. The species were grown in a greenhouse for 18 months, which nutrient solution was applied weekly; the plants were then harvested and the leaves dried to extract the essential oil. The essential oil was analyzed by gas chromatography and mass spectrometry to study its chemical profiles. Eleven substances were found in the essential oil of A. emarginata, primarily (E)-caryophyllene (29.29%), (Z)-caryophyllene (16.86%), γ-muurolene (7.54%), α-pinene (13.86%), and tricyclene (10.04%). Ten substances were detected in the oil from A. squamosa, primarily (E)-caryophyllene (28.71%), (Z)-caryophyllene (14.46%), α-humulene (4.41%), camphene (18.10%), α-pinene (7.37%), β-pinene (8.71%), and longifolene (5.64%). Six substances were common to both species: (E)-caryophyllene, (Z)-caryophyllene, α-humulene, camphene, α-pinene, and β-pinene.