854 resultados para CRUZI ANTIGENS
Resumo:
Immunoglobulin G and M humoral response to recombinant protein B13 and glycoconjugate LPPG Trypanosoma cruzi defined antigens was evaluated by ELISA in 18 patients in the acute phase of Chagas disease, who were contaminated on the same occasion. LPPG showed 100% positivity detecting both IgM and IgG antibodies, while positivity of 55-65% was observed for B13. An epimastigote alkaline extract (EPI) also showed high sensitivity for acute IgM (100%) and IgG (90%) antibodies. However LPPG had better discriminatory reactivity since with EPI two patients showed negative IgG and several other sera presented OD values for IgG and IgM antibodies very close to the cutoff. Thus, it is suggested that detection of IgM antibodies by LPPG may be used for diagnosis of the acute phase of Chagas disease. An intense decline of IgG and IgM antibodies to the three antigens was observed in response to anti-T. cruzi chemotherapy in all acute phase patients. After treatment, six (30%) individuals maintained IgG positivity to EPI, LPPG, and B13 with lower reactivity than that measured at the acute phase. For comparison, serology of a group of 22 patients in the chronic phase of Chagas disease and also submitted to chemotherapy was determined. Positive IgM antibodies to EPI, LPPG and B13 were detected in only 5-9% cases. In all chronic-phase patients IgG antibodies highly reactive to the three antigens were present and no significant decrease resulted after benznidazole administration. These observations reinforce previous reports that treatment in the acute phase may reduce or eliminate the parasite.
Resumo:
Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.
Resumo:
The humoral and cellular immune responses as well as the resistance to infection with bloodstream forms of T. cruzi were studied in mice immunized with acidic antigenic fractions from parasite cytosol, F III and F IV, plus Bordetella pertussis as adjuvant. The immunization with F III induced positive ITH and DTH responses to homologous antigens. In mice immunized with F IV, the ITH was negative and four out of six animals presented positive DTH reactions. In both groups of mice the analysis of IgG aginst T. cruzi showed that the major isotype elicited was IgG1. Specific IgE was also detected in sera from F III immunized mice, thus confirming the presence of homocytothropic antibodies. The parasitemias reached by F III and F IV immunized mice after challenge were lower than those of the controls showing in this way a partial protection against the acute infection. The histological studies of heart and skeletal muscle performed two months after the infection revealed variable mononuclear infiltration in all infected mice despite immunization.
Resumo:
We have detected antibodies, in the sera of Chagas disease, Kala-azar and Mucocutaneous leishmaniasis patients, that bind multiple antigens shared between the three causative agents. The Chagas disease sera showed 98 to 100% positive results by ELISA when the Leishmania braziliensis and Leishmania chagasi antigens were used, respectively. The Kala-azar sera showed 100% positive results with Trypanosoma cruzi or L. braziliensis antigens by immunofluorescence assays. The antibodies in the sera of Mucocutaneous leishmaniasis patients showed 100% positive results by ELISA assays with T. cruzi or L. chagasi antigens. Furthermore, the direct agglutination of L. chagasi promastigotes showed that 95% of Kala-azar and 35% of Mucocutaneous leishmaniasis sera agglutinated the parasite in dilutions above 1:512. In contrast, 15% of Chagas sera agglutinated the parasite in dilutions 1:16 and below. Western blot analysis showed that the Chagas sera that formed at least 24 bands with the T. cruzi also formed 13 bands with the L. chagasi and 17 bands with the L. braziliensis. The Kala-azar sera that recognized at least 29 bands with the homologous antigen also formed 14 bands with the T. cruzi and 10 bands with the L. braziliensis antigens. Finally, the Mucocutaneous leishmaniasis sera that formed at least 17 bands with the homologous antigen also formed 10 bands with the T. cruzi and four bands with the L. chagasi antigens. These results indicate the presence of common antigenic determinants in several protozoal proteins and, therefore, explain the serologic cross-reactions reported here.
Resumo:
The polypeptides of 46 and 58kDa were recognized in different T. cruzi strains (Y, WSL and Colombiana) by serum of all chagasic patients studied. These polypeptides were isolated from T. cruzi Y strain and used in ELISA. The sensitivity and specificity were 97.6% [CI 95%: 86-100%] and 100% [CI 95%: 89.3-100%], respectively when Tc 46 was used. When Tc 58 was used the sensitivity and specificity were 100% [CI 95%: 89.6-100%] and 90.2% [CI 95%: 75.9-96.8%], respectively.
Resumo:
Philander frenata and Didelphis marsupialis harbor parasitism by Trypanosoma cruzi without developing any apparent disease and on the contrary to D. marsupialis, P. frenata maintains parasitism by T. cruzi II subpopulations. Here we compared the humoral immune response of the two didelphids naturally and experimentally infected with T. cruzi II group, employing SDS-PAGE/Western blot techniques and by an Indirect immunofluorescence assay. We also studied the histopathological pattern of naturally and experimentally infected P. frenata with T. cruzi. P. frenata sera recognized more antigens than D. marsupialis, and the recognition pattern did not show any change over the course of the follow up of both didelphid species. Polypeptides of 66 and 90kDa were the most prominent antigens recognized by both species in the soluble and enriched membrane fractions. P. frenata recognized intensely also a 45kDa antigen. Our findings indicate that: 1) there were no quantitative or qualitative differences in the patent or subpatent phases in the recognition pattern of P. frenata; 2) the significant differences in the recognition pattern of parasitic antigens by P. frenata and D. marsupialis sera suggest that they probably "learned" to live in harmony with T. cruzi by different strategies; 3) although P. frenata do not display apparent disease, tissular lesions tended to be more severe than has been described in D. marsupialis; and 4) Both didelphids probably acquired infection by T. cruzi after their evolutionary divergence.
Resumo:
A method to purify trypanosomastigotes of some strains of Trypanosoma cruzi (Y, CL, FL, F, "Berenice", "Colombiana" and "São Felipe") from mouse blood by using DEAE-cellulose columns was standardized. This procedure is a modification of the Lanham & Godfrey methods and differs in some aspects from others described to purify T. cruzi bloodstream trypomastigotes, mainly by avoidance of prior purifications of parasites. By this method, the broad trypomastigotes were mainly isolated, accounting for higher recoveries obtained with strains having higher percentages of these forms: processing of infected blood from irradiated mice could be advantageous by increasing the recovery of parasites (percentage and/or total number) and elution of more slender trypomastigotes. Trypomastigotes purified by this method presented normal morphology and motility, remained infective to triatomine bugs and mice, showing in the latter prepatent periods and courses parasitemia similar to those of control parasites, and also reproducing the polymorphism pattern of each strain. Their virulence and pathogenicity also remained considerably preserved, the latter property being evaluated by LD 50 tests, mortality rates and mean survival time of inoculated mice. Moreover, these parasites presented positive, clear and peripheral immunofluorescence reaction at titres similar to those of control organisms, thus suggesting important preservation of their surface antigens.
Resumo:
Theoretically, serological assays with affinity purified marker antigens can allow strain-specific diagnosis even when parasites cannot be retrieved from and infected host. A Trypanosoma cruzi antigen was purified by affinity chromatography using a zymodeme (Z) 2 specific monoclonal antibody (2E2C11). An indirect enzyme-linked immunosorbent assay (ELISA) based on the purified antigen could discriminate between sera from rabbits immunized with T. cruzi zymodeme clones but could not discriminate between sera from mice infected with different zymodemes.
Resumo:
From January 1989 to April 1995, 465 specimens of Triatoma vitticeps were collected in the locality of Triunfo, 2nd District of Santa Maria Madalena municipal district, State of Rio de Janeiro. The bugs were found indoors by local residents with predominance of adults. The flight activity was high in hot months when the incidence in the domicile also increased. Two hundred and two bugs (111 alive and 91 dead) were examined for Trypanosoma cruzi infection. This was detected in 31 of the dead bugs (34%) and 88 (79%) of the live bugs examined. With a view to investigate the possible vertebrate hosts of the T. cruzi isolates, the blood of 122 mammals was examined through Giemsa-stained smears, hemocultures and xenodiagnosis. T. cruzi was detected in three specimens of Didelphis marsupialis and T. (M.) theileri was detected in one specimen of Bos taurus. The parasites were isolated from triatomine feces, xenoculture and hemoculture. No evidence of human infection was detected in 58 inhabitants examined, as evaluated by indirect imunofluorescence technique using T. cruzi epimastigotes as antigens. These results show that T. vitticeps is still a sylvatic species although nymphs have been found inside the domicile. Thus, an epidemiological vigilance is necessary to know the behaviour of this species following the continuous modifications promoted by the presence of man.
Resumo:
In this study we examined whether the maintenance of Trypanosoma cruzi by long-time in axenic culture produces changes in gene expression and antigenic profiles. The studies were made with a Dm30L-clone from a low-virulent strain and a non-cloned virulent EP-strain of T. cruzi. Both parasites were maintained, for at least seven years, by successive alternate passage triatomine/mouse (triatomine condition), or by serial passage in axenic medium (culture condition). The comparison of the [35S]methionine metabolic labeling products of virulent and non-virulent parasites by 2D-SDS-PAGE, clearly indicates that the expression of metacyclic trypomastigotes (but not of epimastigotes) proteins have been altered by laboratory maintenance conditions. Western blot analysis of EP and Dm30L-epimastigotes using a serum anti-epimastigotes revealed that although most of antigens are conserved, four antigens are characteristics of triatomine condition parasites and three other are characteristics of culture condition parasites. Anti-metacyclics serum revealed significative differences in EP- and Dm30L-metacyclic trypomastigotes from triatomine condition. However, avirulent metacyclic forms were antigenically very similar. These results suggest that besides a possible selection of avirulent subpopulation from T. cruzi strains genetically heterogeneous when maintained by long time in axenic culture, changes in virulence might be due to post-translational modifications of the antigens induced by the absence of the natural alternability (vertebrate-invertebrate) in the life-cycle of T. cruzi
Resumo:
Philander opossum and Didelphis marsupialis considered the most ancient mammals and an evolutionary success, maintain parasitism by Trypanosoma cruzi without developing any apparent disease or important tissue lesion. In order to elucidate this well-balanced interaction, we decided to compare the humoral immune response kinetics of the two didelphids naturally and experimentally infected with T. cruzi and immunized by different schedules of parasite antigens, employing an indirect fluorescence antibody test (IFAT). Both didelphids responded with high serological titers to different immunization routes, while the earliest response occurred with the intradermic route. Serological titers of naturally infected P. opossum showed a significant individual variation, while those of D. marsupialis remained stable during the entire follow-up period. The serological titers of the experimentally infected animals varied according to the inoculated strain. Our data suggest that (1) IFAT was sensitive for follow-up of P. opossum in natural and experimental T. cruzi infections; (2) both P. opossum and D. marsupialis are able to mount an efficient humoral immune response as compared to placental mammals; (3) experimentally infected P. opossum and D. marsupialis present distinct patterns of infection, depending on the subpopulation of T. cruzi, (4) the differences observed in the humoral immune responses between P. opossum and D. marsupialis, probably, reflect distinct strategies selected by these animals during their coevolution with T. cruzi.
Resumo:
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.