65 resultados para CPAP withdrawal
Resumo:
Objective: To evaluate the effectiveness of cavernostomy in patients with complex fungal balls.Methods: We analyzed the medical records of patients undergoing cavernostomy between January 2005 and May 2013, evaluating: age, gender, preoperative signs and symptoms, predisposing disease, preoperative tests, location of the aspergilloma, etiologic agent, cavernostomy indication, postoperative outcome.Results: Ten patients were male. The mean age was 42.9 years (34-56). The most frequent symptom was repeated pulmonary bleeding. Cavernostomy was proposed for patients at high risk for lung resection. It was performed in 17 patients and all of them had pulmonary tuberculosis sequelae, with cavitations. The indication in all cases was hemoptysis and elimination of phlegm. The cavernostomies were performed in a single surgical procedure. In all 17 patients the cavity was left open after the withdrawal of the mycetoma. In all patients hemoptysis ceased immediately. Operative mortality was 9.5% (1).Conclusion: cavernostomy is an effective treatment alternative in patients at high risk. It may be useful in some patients with complex aspergilloma, irrespective of lung function or bilateral disease. It is technically easy, has low-risk, saves parenchyma, and may be performed in a single operative time.
Resumo:
The objective of this study was to evaluate the effect of medroxy-progesterone acetate (MAP) with or without estradiol benzoate (EB) on follicular growth during the estrous cycle in cattle. In the first experiment, Hereford cows were synchronized with a synthetic analogue of PGF2 alpha and were treated with two different doses of MAP (250 or 500 mg) with or without EB for 7 days starting on day 8 of the estrous cycle. Follicular growth was inhibited (P<0.05) in all cows except controls and those receiving 250mg MAP without EB. Seventy-five percent of the animals (15/20) showed estrus on days 21 and 22 of the cycle rather than at MAP withdrawal, demonstrating that these treatments did not induce estrus. To determine whether the EB treatment altered endometrial sensitivity to oxytocin and thus the luteolytic cascade, multiparous pre-synchronized cows received 5 mg of EB followed 6 hours later with 50 IU of oxytocin (OT; n=9). Eight hours after EB injection, endometrial fragments were collected from the cows on days 4, 13 and 17 of the estrous cycle and COX-2 gene expression was measured by PCR. EB increased COX-2 mRNA levels only on day 17 of the estrous cycle (P<0.05). In conclusion, MAP alone or associated with EB is able to suppress bovine follicular growth. However, EB in the presence of MAP is not efficient to induce luteolysis in cows when injected on day 8 of the estrous cycle.
Resumo:
Ipomoea carnea subsp. fistulosa, aguapei or mandiyura, is responsible for lysosomal storage in goats. The shrub contains several alkaloids, mainly swansonine which inhibits lysosomal α-mannosidase and Golgi mannosidase II. Poisoning occurs by inhibition of these hydrolases. There is neuronal vacuolation, endocrine dysfunction, cardiovascular and gastrointestinal injury, and immune disorders. Clinical signs and pathology of the experimental poisoning of goats by Ipomoea carnea in Argentina are here described. Five goats received fresh leaves and stems of Ipomoea. At the beginning, the goats did not consume the plant, but later, it was preferred over any other forage. High dose induced rapid intoxication, whereas with low doses, the course of the toxicosis was more protracted. The goats were euthanized when they were recumbent. Cerebrum, cerebellum, medulla oblongata, pons and colliculi, were routinely processed for histology. In nine days, the following clinical signs developed: abnormal fascies, dilated nostrils and abnormal postures of the head, cephalic tremors and nystagmus, difficulty in standing. Subsequently, the goats had a tendency to fall, always to the left, with spastic convulsions. There was lack in coordination of voluntary movements due to Purkinje and deep nuclei neurons damage. The cochlear reflex originated hyperreflexia, abnormal posture, head movements and tremors. The withdrawal reflex produced flexor muscles hypersensitivity at the four legs, later depression and stupor. Abnormal responses to sounds were related to collicular lesions. Thalamic damage altered the withdrawal reflex, showing incomplete reaction. The observed cervical hair bristling was attributed to a thalamic regulated nociceptive response. Depression may be associated with agonists of lysergic acid contained in Ipomoea. These clinical signs were correlated with lesions in different parts of the CNS.
Resumo:
O levantamento florístico do gênero Chara (Characeae, Chlorophyta) nos Estados de Mato Grosso (18°55'05"S, 54°50'39"W) e Mato Grosso do Sul (19°12'03"S, 57°35'32"W), Brasil, resultou na identificação, descrição e ilustração das seis espécies seguintes: Chara fibrosa C. Agardh ex Bruzelius emend. R. D Wood var. hydropitys (Reichenbach) R. D. Wood emend. R. D. Wood f. hydropitys, C. guairensis R. Bicudo, C. kenoyeri Howe, C. martiana Wallman, C. rusbyana Howe e C. socotrensis Nordstedt in Kuhn emend. R. D. Wood. Foram analisadas 93 amostras coletadas em 15 municípios e o material provém de coleções dos herbários CPAP, HMS e SP. A presença de Chara fibrosa var. hydropitys f. hydropitys e de C. guairensis, C. kenoyeri e C. socotrensis é documentada pioneiramente para os Estados de Mato Grosso e Mato Grosso do Sul, respectivamente. A citação de C. martiana é pioneira para ambos os Estados. Chara guairensis foi a espécie que apresentou a mais ampla distribuição geográfica na área estudada, havendo sido coletada em nove localidades distintas, enquanto que C. kenoyeri e C. socotrensis foram as que apresentaram a distribuição geográfica mais restrita, ocorrendo em apenas duas localidades cada uma.
Resumo:
Since arthritis induced by Mycobacterium products (adjuvant) in rats is considered to be immunologically driven, the objective of the present study was to determine if the immunosuppressor drug cyclosporin could affect hindpaw edema and joint hyperalgesia simultaneously. Female Holtzman rats (140-170 g) presented hyperalgesia and edema on the 8th and 12th day following adjuvant injection. Daily systemic (oral or intramuscular) administration of cyclosporin (0.5-5.0 mg kg-1 day-1) or dexamethasone (0.01-0.1 mg kg-1 day-1) for 15 days starting on day zero dose-dependently inhibited the hindpaw edema and hyperalgesia in arthritic rats. However, hyperalgesia but not edema could be detected two days after cyclosporin withdrawal. We concluded that a) the continuous presence of cyclosporin is essential to reduce the development of joint hyperalgesia and that b) different mechanisms underlie the appearance of hyperalgesia and edema in this model. The intracerebroventricular (icv) administration of 5-50-fold smaller doses of cyclosporin (1.5-150 µg/day) or dexamethasone (15 µg/day) also reduced the arthritic hindpaw edema and hyperalgesia. Peripheral blood from animals injected with effective systemic cyclosporin doses showed detectable levels of the drug, whereas peripheral blood from those injected with icv cyclosporin did not, as measured by specific RIA. Our results indicate that cyclosporin administered by the central route is as effective as by the systemic route to reduce joint hyperalgesia and hindpaw edema in arthritic rats. The antiarthritic effect induced by low doses of cyclosporin in the central nervous system (CNS) could be explored to avoid its often associated systemic side effects during chronic therapy. However, the mechanism(s) involved in the antiarthritic response to cyclosporin in the CNS remain to be elucidated
Resumo:
The intake of saccharin solutions for relatively long periods of time causes analgesia in rats, as measured in the hot-plate test, an experimental procedure involving supraspinal components. In order to investigate the effects of sweet substance intake on pain modulation using a different model, male albino Wistar rats weighing 180-200 g received either tap water or sucrose solutions (250 g/l) for 1 day or 14 days as their only source of liquid. Each rat consumed an average of 15.6 g sucrose/day. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex) were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after treatment. The indexes (mean ± SEM, N = 12) for the groups receiving tap water for 1 day or 14 days, and sucrose solution for 1 day or 14 days were 0.09 ± 0.04, 0.10 ± 0.05, 0.15 ± 0.08 and 0.49 ± 0.07, respectively. One-way ANOVA indicated a significant difference (F(3,47) = 9.521, P<0.001) and the Tukey multiple comparison test (P<0.05) showed that the analgesia index of the 14-day sucrose-treated animals differed from all other groups. Naloxone-treated rats (N = 7) receiving sucrose exhibited an analgesia index of 0.20 ± 0.10 while rats receiving only sucrose (N = 7) had an index of 0.68 ± 0.11 (t = 0.254, 10 degrees of freedom, P<0.03). This result indicates that the analgesic effect of sucrose depends on the time during which the solution is consumed and extends the analgesic effects of sweet substance intake, such as saccharin, to a model other than the hot-plate test, with similar results. Endogenous opioids may be involved in the central regulation of the sweet substance-produced analgesia.
Resumo:
The antinociceptive effects of stimulating the medial (ME) and central (CE) nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.
Resumo:
We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.
Resumo:
Hippocrates was the first to suggest the healing power of food; however, it was not until the medieval ages that food was considered a tool to modify temperament and mood, although scientific methods as we know them today were not in use at the time. Modern scientific methods in neuroscience began to emerge much later, leading investigators to examine the role of diet in health, including mental well-being, with greater precision. This review shows how short- and long-term forced dietary interventions bring about changes in brain structure, chemistry, and physiology, leading to altered animal behavior. Examples will be presented to show how diets alter brain chemistry, behavior, and the action of neuroactive drugs. Most humans and most animal species examined in a controlled setting exhibit a fairly reproducible pattern of what and how they eat. Recent data suggest that these patterns may be under the neurochemical and hormonal control of the organisms themselves. Other data show that in many instances food may be used unconsciously to regulate mood by seemingly normal subjects as well as those undergoing drug withdrawal or experiencing seasonal affective disorders and obesity-related social withdrawal. We will discuss specific examples that illustrate that manipulation of dietary preference is actually an attempt to correct neurochemical make-up.
Resumo:
The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2) was significantly increased in cannulated (Cn) rats, compared with naive (Nv) or sham-operated (Sh) rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%). The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.
Resumo:
The treatment of pain before it initiates may prevent the persistent pain-induced changes in the central nervous system that amplify pain long after the initial stimulus. The effects of pre- or postoperative intraperitoneal administration of morphine (2 to 8 mg/kg), dipyrone (40 and 80 mg/kg), diclofenac (2 to 8 mg/kg), ketoprofen (10 and 20 mg/kg), and tenoxicam (10 and 20 mg/kg) were studied in a rat model of post-incisional pain. Groups of 5 to 8 male Wistar rats (140-160 g) were used to test each drug dose. An incision was made on the plantar surface of a hind paw and the changes in the withdrawal threshold to mechanical stimulation were evaluated with Von Frey filaments at 1, 2, 6 and 24 h after the surgery. Tenoxicam was given 12 or 6 h preoperatively, whereas the remaining drugs were given 2 h or 30 min preoperatively. Postoperative drugs were all given 5 min after surgery. No drug abolished allodynia when injected before or after surgery, but thresholds were significantly higher than in control during up to 2 h following ketoprofen, 6 h following diclofenac, and 24 h following morphine, dipyrone or tenoxicam when drugs were injected postoperatively. Significant differences between pre- and postoperative treatments were obtained only with ketoprofen administered 30 min before surgery. Preoperative (2 h) intraplantar, but not intrathecal, ketoprofen reduced the post-incisional pain for up to 24 h after surgery. It is concluded that stimuli generated in the inflamed tissue, rather than changes in the central nervous system are relevant for the persistence of pain in the model of post-incisional pain.
Resumo:
Previous studies have shown that rats withdrawn from long-term treatment with dopamine receptor blockers exhibit dopaminergic supersensitivity, which can be behaviorally evaluated by enhanced general activity observed in an open-field. Recently, it has been reported that co-treatment with the non-benzodiazepine anxiolytic buspirone attenuates the development of haloperidol-induced dopaminergic supersensitivity measured by open-field behavior of rats. The aims of the present study were: 1) to determine, as previously reported for rats, if mice withdrawn from long-term neuroleptic treatment would also develop dopaminergic supersensitivity using open-field behavior as an experimental paradigm, and 2) to examine if acute buspirone administration would attenuate the expression of this behavioral dopaminergic supersensitivity. Withdrawal from long-term haloperidol treatment (2.5 mg/kg, once daily, for 20 days) induced a significant (30%) increase in ambulation frequency (i.e., number of squares crossed in 5-min observation sessions) but did not modify rearing frequency or immobility duration in 3-month-old EPM-M1 male mice observed in the open-field apparatus. Acute intraperitoneal injection of buspirone (3.0 and 10 but not 1.0 mg/kg, 12-13 animals per group) 30 min before open-field exposure abolished the increase in locomotion frequency induced by haloperidol withdrawal. These data suggest that the open-field behavior of mice can be used to detect dopaminergic supersensitivity, whose expression is abolished by acute buspirone administration.
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
The objective of the present study was to evaluate the factor structure of Bech's version of the Brief Psychiatric Rating Scale (BPRS), translated into Portuguese. The BPRS was administered to a heterogeneous group of psychiatric inpatients (N = 98) and outpatients (N = 62) in a University Hospital. Each patient was evaluated from one to eight times. The interval between consecutive interviews was one week for the inpatients and one month for the outpatients. The results were submitted to factorial analysis. The internal consistency of the total scale and of each factor was also estimated. Factorial analysis followed by normalized orthogonal rotation (Varimax) yielded four factors: Withdrawal-Retardation, Thinking Disorder, Anxious-Depression and Activation. Internal consistency measured by Cronbach's alpha coefficient ranged from 0.766 to 0.879. The data show that the factor structure of the present instrument is similar to that of the American version of the BPRS which contains 18 items, except for the absence of the fifth factor of the latter scale, Hostile-Suspiciousness.
Resumo:
We studied the effects of ethanol on the levels of norepinephrine, dopamine, serotonin (5-HT) and their metabolites as well as on D1- and D2-like receptors in the rat striatum. Ethanol (2 or 4 g/kg, po) was administered daily by gavage to male Wistar rats and on the 7th day, 30 min or 48 h after drug administration, the striatum was dissected for biochemical assays. Monoamine and metabolite concentrations were measured by HPLC and D1- and D2-like receptor densities were determined by binding assays. Scatchard analyses showed decreases of 30 and 43%, respectively, in D1- and D2-like receptor densities and no change in dissociation constants (Kd) 48 h after the withdrawal of the dose of 4 g/kg. Ethanol, 2 g/kg, was effective only on the density of D2-like receptors but not on Kd of either receptor. Thirty minutes after the last ethanol injection (4 g/kg), decreases of D2 receptor density (45%) as well as of Kd values (34%) were detected. However, there was no significant effect on D1-like receptor density and a 46% decrease was observed in Kd. An increase in dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), a decrease in norepinephrine, and no alteration in 5-HT levels were demonstrated after 48-h withdrawal of 4 g/kg ethanol. Similar effects were observed in dopamine and DOPAC levels 30 min after drug administration. No alteration in norepinephrine concentration and a decrease in 5-HT levels were seen 30 min after ethanol (4 g/kg) administration. Our findings indicate the involvement of the monoaminergic system in the responses to ethanol.