121 resultados para COATED LIPOSOMES
Resumo:
A new serological test, the gelatin particle agglutination test (GPAT), was used for the serodiagnosis of schistosomiasis mansoni. This technique showed the sensitivity (90.6%) and specificity (97.8%) close to those of enzyme-linked immunosorbent assay. The GPAT can be easily and rapidly performed without specialized equipment, by using lyophilized antigen-coated gelatin particles. The test also seems to be useful for mass screening of Schistosoma infection in field conditions.
Resumo:
Oxamniquine (OXA) was sucessfully encapsulated in small unilamellar vesicles using a pH gradient method. This procedure led to a high drug encapsulation efficiency (> 85%) at a drug to lipid molar ratio of 1/10. Moreover, these liposomes were found to retain encapsulated OXA efficciently under dialysis conditions at 37º C. Liposome-entrapped OXA (LOXA), OXA, and empty liposomes were tested against Schistosoma mansoni in a murine model. LOXA produced a significant reduction of the worm burden compared to the other preparations, when inoculated by subcutaneous route (s.c.) with 10 mg OXA/kg animal one day before the infection, and 3, 7, and 14 days after. However, LOXA was not effective when given 7 days before, or 35 days after infections. OXA, in the free form, was effective in relation to the untreated group, only when administered 3 days after the infection. Maximum effect of LOXA, with 97% reduction of the parasite number, was observed when the preparation was given s.c.one day before the infection. On the other hand, LOXA inoculated intraperitoneally one day before the infection didnt show any reduction of the parasite count. It can be concluded that LOXA is more effective than OXA for the treatment of experimental schistosomiasis, particularly when administered subcutaneously at a time close to the infection
Resumo:
Crude Toxoplasma gondii antigens represent raw material used to prepare reagents to be employed in different serologic tests for the diagnosis of toxoplasmosis, including the IgM and IgG indirect hemagglutination (IgG-HA and IgM-HA) tests. So far, the actual antigenic molecules of the parasite involved in the interaction with agglutinating anti-T. gondii antibodies in these tests are unknown. The absorption process of serum samples from toxoplasmosis patients with the IgG-HA reagent (G-toxo-HA) demonstrated that red cells from this reagent were coated with T. gondii antigens with Mr of 39, 35, 30, 27, 22 and 14 kDa. The immune-absorption process with the IgM-HA reagent (M-toxo-HA), in turn, provided antibody eluates which recognized antigenic bands of the parasite corresponding to Mr of 54, 35 and 30 kDa, implying that these antigens are coating red cells from this reagent. The identification of most relevant antigens for each type of HA reagent seems to be useful for the inspection of the raw antigenic material, as well as of reagent batches routinely produced. Moreover the present findings can be used to modify these reagents in order to improve the performance of HA tests for the diagnosis of toxoplasmosis
Resumo:
The morphological identification of Trypanosoma cruzi is currently considered to have a high specificity, but its sensitivity, which depends on the volume of the sample examined, is rather low. Trypanosome developmental stages suspended in blood, reduviid feces, and culture media are routinely searched for by means of fresh film examination (about 2 µL). High speed centrifugation of blood samples separates the buffy coat, where most trypomastigotes concentrate. As the parasites are transparent and colorless, their detection is mostly dependent on their motility. The fluorescent vital stain acridine orange has been used to enhance image contrast, as exemplified by the QBC (Quantitative Buffy Coat) technique. Staining blood, buffy coat, reduviid feces, and culture media samples with methylene blue (also a vital dye) is a means of producing sharp, well contrasted images of motile or non-motile T. cruzi developmental stages, only standard laboratory microscopes being required. Slides previously coated with a thin layer of methylene blue are used to stain fresh blood films. Photomicrographs exemplify the results of methylene blue staining applied to living and fixed parasites.
Two competitive enzyme immunoassays for the detection of IgG class antibodies to hepatitis a antigen
Resumo:
Two competitive enzyme immunoassays (EIA) techniques were developed: in the first (COMP-1), test sera were added together with HAV antigen on anti-HAV IgG-coated wells followed by an anti-HA VHRP conjugate; in the second (COMP-2), test sera and anti-HA VHRP conjugate competed for HAV epitopes previously adsorbed to anti-HA V IgG-coated wells. Both procedures used tetramethylbenzidine (TMB) as a substrate. Both competitive tests were shown to be reproducible and suitable for routine diagnosis and research purposes.
Resumo:
INTRODUCTION: Garlic has a wide range of actions, including antibacterial, antiviral, antifungal, antiprotozoal and anthelmintic actions. This antiparasitic activity has been attributed to allicin, which is the main constituent of garlic. The present study aimed to investigate the in vitro activity of allicin on the tegument of adult Schistosoma mansoni worms using scanning electron microscopy. METHODS: Swiss Webster mice were infected with S. mansoni cercariae (100 per mouse) and sacrificed 50 days later to acquire the adult worms. These worms were collected by perfusion and placed in RPMI medium 1,640 at 37°C before transferring to RPMI media containing 0 (control), 5, 10, 15 and 20mg/mL of allicin, where they were incubated for 2h. The worms were fixed in 2.5% glutaraldehyde solution, washed twice, post-fixed in osmium tetroxide, washed twice and then dehydrated with ascending grades of ethanol. The samples were air-dried, mounted on stubs, gold coated in an ion sputtering unit and viewed using a scanning electron microscope. RESULTS: A concentration of 5mg/mL caused wrinkling in the tegument; a concentration of 10mg/mL resulted in changes to tubercles and loss or modification of spines. With 15 and 20mg/mL increasing damage to the tegument could be seen, such as vesicle formation and the presence of ulcers. CONCLUSIONS: These findings demonstrate the effect of allicin on adult S. mansoni worms and indicate that most of the changes occur at concentrations greater than that normally indicated for treatment.
Resumo:
We showed that a large fraction of lepromatous patients do harbor helper-type circulating T-cells that can be activated in vitro by Mycobacterium leprae. M. leprae and PPD triggered T-cell lines could be then obtained from both tuberculoid and lepromatous patients. The proliferative response of these helper T-cells is predominantly directed against epitopes shared by several species of mycobacteria, in lepromatous patients as well as in tuberculoid patients, but species specific T-cells are also present. When presented in the context of M. leprae, these cross reactive epitopes usually fail to stimulate the T-cell lines of lepromatous patients, because of the contamination of the lines by supressor T-cells actavable by M. leprae. In one lepromatous patient, PPD and M. leprae reactive T-cell lines and clones (of the CD4 phenotype), exhibited a strong cytotoxic activity to autologous target cells coated with antigen: the relevance of this phenomenon to the pathophysiology of lepromatous leprosy remains however unknown.
Resumo:
A simple and rapid staphylococcal coagglutination test for the detection of Toxoplasma gondii antigens in mice urine is described. A suspension of protein-A containing Staphylococcus aureus coated with rabbit hyperimmune serum was used as reagent. The sensitivity of the antigen assay was found to be at least 118 ng of the antigen protein per ml. No coagglutination was observed when the reagent was challenged against antigenic solutions of other parasites. The suitability of the method for detecting antigens of T. gondii in urine samples was studied by experimental toxoplasma infection in mice. Before the staphylococcal test, the urine samples were double serially diluted in 0.1 M PBS. From the second day on all samples from infected mice were positive at 1/16 dilution. At this dilution, all samples from non infected mice were negative or did not produce coagglutination. This method might be used in the rapid etiological diagnosis also in human cases of acute toxoplasmosis.
Resumo:
Dengue virus replication in mosquito cell cultures was observed by electron microscopy in one fatal and 40 classical isolates from a dengue type 2 outbreak in Rio de Janeiro and compared with the prototype New Guinea C strain. All the Brazilian isolates presented, beside the classical structured dengue virus particles, fuzzy coated virus-like particles, never observed in thereferencial New Guinea C virus strain. more numerous DEN-2 virus particles, fuzzy coated virus-like particles, defective virus particles and smooth membrane structures inside the rough endoplasmic reticulum characterized the unique fatal isolate examined.
Resumo:
We studied the role of CD4+, CD8+, CD4- CD8- T cells and IgG anti-Leishmania after infection or vaccination in the CBA/ca mouse. Mice were either infected with L. m. mexicana promastigotes or vaccinated with parasite-membrane antigens incorporated into liposomes. Successfully vaccinated mice were used as cell-donors in adoptive transfer experiments. Naive, syngeneic recipients received highly-enriched CD4+, CD8+ or CD4- CD8- T cells from those two set of donors and challenged with live parasites. Our results showed that, both CD4+ and CD8+ T cells from infected or vaccinated donors conferred significant disease-resistance to naive recipients. In addition, adoptive transfer of CD4- CD8- T cells from vaccinated donors significantly delayed lesion growth in recipient mice. We concluded that vaccination of CBA mice correlates with the induction of protective CD4+, CD8+ and CD4- CD8- T cells and the synthesis of IgG anti-Leishmania.
Resumo:
Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.
Resumo:
Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.
Resumo:
There is an urgent need for new drugs for the chemotherapy of human African trypanosomiasis, Chagas disease and leishmaniasis. Progress has been made in the identification and characterization of novel drug targets for rational chemotherapy and inhibitors of trypanosomatid glycosomal enzymes, trypanothione reductase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, cysteine proteases and of the purine and sterol biosynthetic pathways. However, less attention has been paid to the pharmacological aspects of drug design or to the use of drug delivery systems in the chemotherapy of African trypanosomiasis and Chagas disease. A review of research on pharmacology and drug delivery systems shows that there are new opportunities for improving the chemotherapy of these diseases.
Resumo:
This study was undertaken to evaluate an enzyme immunoassay (EIA) for hepatitis C virus antibody detection (anti-HCV), using just one antigen. Anti-HCV EIA was designed to detect anti-HCV IgG using on the solid-phase a recombinant C22 antigen localized at the N-terminal end of the core region of HCV genome, produced by BioMérieux. The serum samples diluted in phosphate buffer saline were added to wells coated with the C22, and incubated. After washings, the wells were loaded with conjugated anti-IgG, and read in a microtiter plate reader (492 nm). Serum samples of 145 patients were divided in two groups: a control group of 39 patients with non-C hepatitis (10 acute hepatitis A, 10 acute hepatitis B, 9 chronic hepatitis B, and 10 autoimmune hepatitis) and a study group consisting of 106 patients with chronic HCV hepatitis. In the study group all patients had anti-HCV detected by a commercially available EIA (Abbott®), specific for HCV structural and nonstructural polypeptides, alanine aminotransferase elevation or positive serum HCV-RNA detected by nested-PCR. They also had a liver biopsy compatible with chronic hepatitis. The test was positive in 101 of the 106 (95%) sera from patients in the study group and negative in 38 of the 39 (97%) sera from those in the control group, showing an accuracy of 96%. According to these results, our EIA could be used to detect anti-HCV in the serum of patients infected with hepatitis C virus.
Resumo:
The Mojuí dos Campos virus (MDCV) was isolated from the blood of an unidentified bat (Chiroptera) captured in Mojuí dos Campos, Santarém, State of Pará, Brazil, in 1975 and considerated to be antigenically different from other 102 arboviruses belonging to several antigenic groups isolated in the Amazon region or another region by complement fixation tests. The objective of this work was to develop a morphologic, an antigenic and physicochemical characterization of this virus. MDCV produces cytopathic effect in Vero cells, 24 h post-infection (p.i), and the degree of cellular destruction increases after a few hours. Negative staining electron microscopy of the supernatant of Vero cell cultures showed the presence of coated viral particles with a diameter of around 98 nm. Ultrathin sections of Vero cells, and brain and liver of newborn mice infected with MDCV showed an assembly of the viral particles into the Golgi vesicles. The synthesis kinetics of the proteins for MDCV were similar to that observed for other bunyaviruses, and viral proteins could be detected as early as 6 h p.i. Our results reinforce the original studies which had classified MDCV in the family Bunyaviridae, genus Bunyavirus as an ungrouped virus, and it may represent the prototype of a new serogroup.