52 resultados para CARLO RADIATIVE-TRANSFER
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
By using the Monte Carlo simulation platform with probabilistic mathematical functions of the Boltzmann type, , having activation energy and temperature as parameters, it was possible to assess important dynamic aspects of homogeneous chemical reactions of the types A → B and A B. The protocol proved a useful tool in work with the basic concepts of Kinetics and Thermodynamics allowing its application both in class activities and for assisting experimental procedures.
Resumo:
Photoacoustic spectroscopy provides information about both amplitude and phase of the response of a system to an optical excitation process. This paper presents the studies of the phase in the electron transfer process between octaethylporphyn (OEP) and quinone molecules dispersed in a polymeric matrix. It was observed a tendency in the phase behavior to small values only in the spectral region near to 620 nm, while for shorter wavelength did not show any tendency. These measurements suggested that the electron transfer to acceptor occurred with the participation of octaethylporphyn singlet excited state.
Resumo:
This paper brings an active and provocative area of current research. It describes the investigation of electron transfer (ET) chemistry in general and ET reactions results in DNA in particular. Two DNA intercalating molecules were used: Ethidium Bromide as the donor (D) and Methyl-Viologen as the acceptor (A), the former intercalated between DNA bases and the latter in its surface. Using the Perrin model and fluorescence quenching measurements the distance of electron migration, herein considered to be the linear spacing between donor and acceptor molecule along the DNA molecule, was obtained. A value of 22.6 (± 1.1) angstroms for the distance and a number of 6.6 base pairs between donor and acceptor were found. In current literature the values found were 26 angstroms and almost 8 base pairs. DNA electron transfer is considered to be mediated by through-space interactions between the p-electron-containing base pairs.
Resumo:
In this article, a methodology is used for the simultaneous determination of the effective diffusivity and the convective mass transfer coefficient in porous solids, which can be considered as an infinite cylinder during drying. Two models are used for optimization and drying simulation: model 1 (constant volume and diffusivity, with equilibrium boundary condition), and model 2 (constant volume and diffusivity with convective boundary condition). Optimization algorithms based on the inverse method were coupled to the analytical solutions, and these solutions can be adjusted to experimental data of the drying kinetics. An application of optimization methodology was made to describe the drying kinetics of whole bananas, using experimental data available in the literature. The statistical indicators enable to affirm that the solution of diffusion equation with convective boundary condition generates results superior than those with the equilibrium boundary condition.
Resumo:
The transposition of the São Francisco River is considered one of the greatest engineering works in Brazil of all time since it will cross an extensive agricultural region of continental dimensions, involving environmental impacts, water, soil, irrigation, water payment and other multidisciplinary themes. Taking into account its importance, this subject was incorporated into a discipline of UFSCar (Federal University of São Carlos - Brazil) named "Pollution and Environmental Impacts". It was noted strong reaction against the project, even before the presentation. To allow a critical analysis, the first objective was to compile the main technical data and environmental impacts. The second objective was to detect the three most important aspects that cause reaction, concluding for the following reasons: assumption that the volume of water to be transferred was much greater than it actually is proposed in the project; lack of knowledge about similar project already done in Brazil; the idea that the artificial canal to be built was much broader than that proposed by the project. The participants' opinion about "volume to be transferred" was raised quantitatively four times: 2-undergraduate students; 1-graduate; 1-outside community. The average resulted 14 times larger than that proposed in the project, significant according to t-test. It was concluded that the reaction to water transfer project is due in part to the ignorance combined with a preconceived idea that tend to overestimate the magnitude of environmental impacts.
Resumo:
Passive immunity transfer (PIT) evaluation is an essential tool for the maintenance of healthy calves during the first months of life. Since lactation number and breed have been proven to influence immunoglobulin levels in colostrum, the aim of this study was to evaluate PIT from primiparous and multiparous Canchim cows to their calves. Blood samples were collected from the calves before colostrum intake and 1, 2, 7, 15 and 30 days thereafter, while colostrum samples from the cows were taken immediately after parturition. Activities of gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and concentrations of total protein, albumin, globulins, immunoglobulin A (IgA), immunoglobulin G (IgG), total and ionized calcium, inorganic phosphorus, magnesium, sodium and potassium were evaluated in calves' serum and activities of GGT and ALP and concentrations of total protein, IgA and IgG were assessed in cow's colostrum whey. Immunoglobulins concentrations were evaluated by electrophoresis in polyacrylamide gels. Serum biochemistry evaluations revealed an increase in gamma-glutamyl transferase and alkaline phosphatase activities and in total protein, globulins, immunoglobulin A and immunoglobulin G levels in calves' serum after colostrum intake. Only total protein and light chain immunoglobulin G levels in colostrum whey were affected by the cows' lactation number. Phosphorus and magnesium levels in blood serum increased after colostrum intake, while sodium and potassium levels oscillated in the experimental period. PIT was influenced by the cows' lactation number but was efficient in both groups.
Resumo:
The objective of this study was to evaluate and compare the transfer of passive immunity and the proteinogram in Criollo Lageano (CL) and Black and White Holstein (BWH) calves. Two groups were utilized with 13 Criollo Lageano and 10 BWH calves. Blood samples were collected for the measurement of total serum protein, electrophoresis of serum proteins, activity of the gamma glutamyl transferase, and concentration of IgG by the method of the zinc sulfate turbidity in periods between 24 and 36 hours of life, 15, 30, 60, 90, 120, 150 and 180 days. Statistical analysis was performed by ANOVA and Tukey test at 5% significance level, and correlations between variables were calculated. Variations of serum proteins followed a pattern of physiological behavior over the first six months of life and production of immunoglobulins was active earlier in BWH calves and slower in the Criollo Lageano, without causing any impact on their health. Gamma globulin in the first days of life (24-36h) was correlated with IgG (r=0.87 for CL and r=0.89 for BWH), PTS (r=0.91 for CL and r=0.92 for BWH), Glob (r=0.99 for CL and r=0.98 for BWH) and GGT (r=0.14 for CL and r=0.83 for BWH). It was concluded that there was no failure in the transfer of passive immunity in Criollo Lageano calves but this failure occurred in the BWH calves. IgG values estimated by the zinc sulfate turbidity and serum proteins were considered good indicators of the transfer of passive immunity in calves between 24 and 36 hours of life.
Resumo:
This study aimed to assess and evaluate the effects of Theileria equi infection on embryonic recovery, gestation and early embryonic loss. Thirteen Mangalarga Marchador Theileria equi positive donors (diagnosed through nested-PCR) and 40 embryos receptors were used. Donors were submitted to two embryo collections in two consecutive estrous cycles (GId); after, the same mares were treated with imidocarb dipropionate (1.2mg/kg IM.) in order to collect more embryos in two more estrous cycles (GIId). Receptors were divided into two groups (control and with treated) with 20 animals each, where one group was the control (GIr) and the other one (GIIr) treated with 1.2mg/kg IM of imidocarb dipropionate assessing the gestation rate at 15, 30, 45 and 60 days. After 52 embryo collections, the embryonic recovery rates were 53.84% (14/26) and 65.38% (17/26) (p> 0.05) for GId and GIId, respectively. The gestation rate was 70% (14/20) (p>0.05) at 15, 30, 45 and 60 days in group GIr and for GIIr was 85% (17/20) (p>0.05) at 15 days, 80% (16/20) (p>0.05) at 30, 45 and 60 days. The treatment with imidocarb dipropionate did not cause significant improvement in the reproductive efficiency at an ET program.
Resumo:
Abstract:Two ultrasound based fertility prediction methods were tested prior to embryo transfer (ET) and artificial insemination (AI) in cattle. Female bovines were submitted to estrous synchronization prior to ET and AI. Animals were scanned immediately before ET and AI procedure to target follicle and corpus luteum (CL) size and vascularity. In addition, inseminated animals were also scanned eleven days after insemination to target CL size and vascularity. All data was compared with fertility by using gestational diagnosis 35 days after ovulation. Prior to ET, CL vascularity showed a positive correlation with fertility, and no pregnancy occurred in animals with less than 40% of CL vascularity. Prior to AI and also eleven days after AI, no relationship with fertility was seen in all parameters analyzed (follicle and CL size and vascularity), and contrary, cows with CL vascularity greater than 70% exhibit lower fertility. In inseminated animals, follicle size and vascularity was positive related with CL size and vascularity, as shown by the presence of greater CL size and vascularity originated from follicle with also greater size and vascularity. This is the first time that ultrasound based fertility prediction methods were tested prior to ET and AI and showed an application in ET, but not in AI programs. Further studies are needed including hormone profile evaluation to improve conclusion.
Resumo:
Experiments were performed to determine average heat transfer coefficients and friction factors for turbulent flow through annular ducts with pin fins. The measurements were carried out by means of a double-pipe heat exchanger. The total number of pins attached to the inner wall of the annular region was 560. The working fluids were air, flowing in the annular channel, and water through the inner circular tube. The average heat transfer coefficients of the pinned air-side were obtained from the experimental determination of the overall heat transfer coefficients of the heat exchanger and from the knowledge of the average heat transfer coefficients of the circular pipe (water-side), which could be found in the pertinent literature. To attain fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner circular duct of the heat exchanger and the pin fins were made of brass. Due to the high thermal conductivity of the brass, the small tube thickness and water temperature variation, the surface of the internal tube was practically isothermal. The external tube was made of an industrial plastic which was insulated from the environment by means of a glass wool batt. In this manner, the outer surface of the annular channel can be considered adiabatic. The results are presented in dimensionless forms, in terms of average Nusselt numbers and friction factors as functions of the flow Reynolds number, ranging from 13,000 to 80,000. The pin fin efficiency, which depends on the heat transfer coefficient, is also determined as a function of dimensionless parameters. A comparison of the present results with those for smooth sections (without pins) is also presented. The purpose of such a comparison is to study the influence of the presence of the pins on the pressure drop and heat transfer rate.
Resumo:
This work studies the forced convection problem in internal flow between concentric annular ducts, with radial fins at the internal tube surface. The finned surface heat transfer is analyzed by two different approaches. In the first one, it is assumed one-dimensional heat conduction along the internal tube wall and fins, with the convection heat transfer coefficient being a known parameter, determined by an uncoupled solution. In the other way, named conjugated approach, the mathematical model (continuity, momentum, energy and K-epsilon equations) applied to tube annuli problem was numerically solved using finite element technique in a coupled formulation. At first time, a comparison was made between results obtained for the conjugated problem and experimental data, showing good agreement. Then, the temperature profiles under these two approaches were compared to each other to analyze the validity of the one-dimensional classical formulation that has been utilized in the heat exchanger design.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
This paper presents the experimental characterization of hydrodynamics and gas-liquid mass transfer in a three-phase fluidized bed containing polystyrene and nylon particles. The influence of gas and liquid velocities on phase holdups and volumetric gas-liquid mass transfer coefficient was investigated for flow conditions similar to those applied in biotechnological process. The phase holdups were obtained by the pressure profile technique. The volumetric gas-liquid mass transfer coefficient was obtained adjusting the experimental concentration profiles of dissolved oxygen in the liquid phase with the predictions of the axial dispersion model. According to experimental results the liquid holdup increases with the gas velocity, whereas the solid holdup decreases. The gas holdup increases significantly with the increase in gas velocity, and it shows for the three-phase fluidized bed comparable values or larger than those of bubble column. The volumetric gas-liquid mass transfer coefficient increases significantly with an increase in the air velocity for both bubble column and fluidized beds. In addition, in the operational condition of high liquid velocity, the presence of low-density particles in the bed increased the gas-liquid mass transfer, and thus the volumetric mass transfer coefficient values obtained in the fluidized bed were comparable or larger than those of bubble column.