69 resultados para C1-INHIBITOR DEFICIENCY
Resumo:
Boron deficiency in coffee is widely spread in Brazilian plantations, but responses to B fertilizer have been erratic, depending on the year, form and time of application and B source. A better understanding of the effects of B on plant physiology and anatomy is important to establish a rational fertilization program since B translocation within the plant may be affected by plant anatomy. In this experiment, coffee plantlets of two varieties were grown in nutrient solutions with B levels of 0.0 (deficient), 5.0 µM (adequate) and 25.0 µM (high). At the first symptoms of deficiency, leaves were evaluated, the cell walls separated and assessed for B and Ca concentrations. Scanning electron micrographs were taken of cuts of young leaves and branch tips. The response of both coffee varieties to B was similar and toxicity symptoms were not observed. Boron concentrations in the cell walls increased with B solution while Ca concentrations were unaffected. The Ca/B ratio decreased with the increase of B in the nutrient solution. In deficiency of B, vascular tissues were disorganized and xylem walls thinner. B-deficient leaves had fewer and deformed stomata.
Resumo:
Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 µmol L-1), Cu (0.05, 0.25 and 0.50 µmol L-1), Mn (0.2, 1.0 and 2.0 µmol L-1) and Zn (0.2, 1.0 and 2.0 µmol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.
Resumo:
Despite the presence of a family of defense proteins, Phaseolus vulgaris can be attacked by bruchid insects resulting in serious damage to stored grains. The two distinct active forms of a-amylase inhibitors, a-AI1 and a-AI2, in P. vulgaris show different specificity toward a-amylases. Zabrotes subfasciatus a-amylase is inhibited by a-AI2 but not by a-AI1. In contrast, porcine a-amylase is inhibited by a-AI1 but not by a-AI2. The objective of this work was to understand the molecular basis of the specificity of two inhibitors in P. vulgaris (a-AI1 and a-AI2) in relation to a-amylases. Mutants of a-AI2 were made and expressed in tobacco plants. The results showed that all the a-AI2 mutant inhibitors lost their activity against the insect a-amylases but none exhibited activity toward the mammalian a-amylase. The replacement of His33 of a-AI2 with the a-AI1-like sequence Ser-Tyr-Asn abolished inhibition of Z. subfasciatus a-amylase. From structural modeling, the conclusion is that the size and complexity of the amylase-inhibitor interface explain why mutation of the N-terminal loop and resultant abolition of Z. subfasciatus a-amylase inhibition are not accompanied by gain of inhibitory activity against porcine a-amylase.
Resumo:
O objetivo deste trabalho foi avaliar os atributos de produtividade, qualidade e conservação pós-colheita de tomates, para comparar os efeitos promovidos pelos alelos alcobaça (norª), nonripening (nor) e ripening inhibitor (rin) em heterozigose, isoladamente ou em duplas combinações, sobre frutos de tomateiros híbridos. Foram avaliados dez tratamentos: sete híbridos experimentais quase-isogênicos, com background FloraDade x Tropic de genótipos nor+/norª, rin+/rin, nor+/nor, nor/norª, nor+/norª rin+/rin e nor+/nor rin+/rin; e três testemunhas comerciais (Floradade, Tropic e Carmen F1). Contrariamente aos genótipos rin+/rin e nor+/nor, o genótipo nor+/norª não prolongou, significativamente, a firmeza dos frutos em pós-colheita. Os genótipos duplo-mutantes norª/nor, nor+/norª rin+/rin e nor+/nor rin+/rin foram eficientes em atrasar a perda de firmeza e a evolução da coloração dos frutos; os efeitos dos locos nor+/norª e rin+/rin, juntos, sofreram desvios significativos em relação à soma dos efeitos desses locos, quando atuaram separadamente, no sentido de intensificarem esses atrasos. O uso de híbridos heterozigotos, nas duplas combinações entre os locos norª, nor e rin, mostrou-se vantajoso por propiciar frutos firmes, com maior extensão da vida pós-colheita, em comparação com o uso dos híbridos portadores desses locos isoladamente. A qualidade dos frutos duplo-mutantes não foi limitada pelo atraso na evolução da coloração vermelha.
Resumo:
Hancornia speciosa Gomes (Mangaba tree) is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), and molybdenum (Mo). The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.
Resumo:
A simple, sensitive and reproducible spectrophotometric method was developed for the determination of sitagliptin phosphate in bulk and in pharmaceutical formulations. The proposed method is based on condensation of the primary amino group of sitagliptin phosphate with acetyl acetone and formaldehyde producing a yellow colored product, which is measured spectrophotometrically at 430nm. The color was stable for about 1 hour. Beer's law is obeyed over a concentration range of 5-25 µg/ml. The apparent molar absorptivity and Sandell sensitivity values are 1.067 x 10(4) Lmol-1cm-1 and 0.0471 µgcm-2 respectively. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of the method was tested by analyzing sitagliptin phosphate in its pharmaceutical preparations. Good recoveries were obtained. The developed method was successfully employed for the determination of sitagliptin phosphate in various pharmaceutical preparations.
Resumo:
To evaluate the influence of diets with different degrees of energy deficiency on the hormonal profile and vital functions, 12 steers were randomly distributed into 3 groups of 4 animals. For 140 days, each group received (G1) a diet to promote a weight gain of 900gr/day (17.7 Mcal/d DE and 13% CP), (G2) 80% of the maintenance requirements (5.8 Mcal/d DE and 7% CP), or (G3) 60% of the maintenance requirements (4.7 Mcal/d DE and 5% CP). In G2 and G3, the energy deficit caused a marked decrease in the heart rate and respiratory rate and a reduction in the blood levels of Insulin like growth factor-1 (IGF-1) and triiodothyronine (T3). The decrease in heart rate, respiratory movement and, to a lesser extent, reduction of the rectal temperature, reflected the low status of energy and was negatively impacted by the low levels of T3. There was a strong correlation between the hormones T3 and IGF-1 (r=0.833). There were also strong correlations between T3 and HR (r=0.701), T3 and RR (r=0.632), IGF-1 and HR (r=0.731), and IGF-1 and RR (r=0.679). There were intermediate correlations between T3 and TºC (r=0.484), T3 and insulin (r=0.506), IGF-1 and insulin (r=0.517), and IGF-1 and TºC (r=0.548). This study showed the influence of a long period of providing an energy-deficient diet on animal performance, correlating hormonal status and vital functions in growing cattle. The results indicated that the evaluated parameters represent an important tool for the early detection of dietary deficiency.
Resumo:
The present study combines the examination of toxins produced by C. cassiicola and the effects of the fungus colonization on L. camara. C. cassiicola was cultivated on solid media and the crude extracts CAE and CE were produced. Both extracts were submitted to a seed germination and growth assay utilizing Physalis ixocarpa, Trifolium alexandrinum, Lolium multiflorum and Amaranthus hypochodriacus. The effect of the extracts on the ATP-synthesis in isolated spinach chloroplasts was also tested. Bioassay guided chromatographic fractionation identified the most active extract (CAE). From this extract ergosta-4,6,8(14),22-tetraen-3-one (C1) and fatty acids were isolated. The C1 compound reduce ATP synthesis in isolated spinach chloroplasts. The interference of fatty acids with ATP synthesis and also with weed growth provides one explanation of the phytogrowth-inhibitory properties of such fungal extracts. Histological observations involving fungus-plant interaction were made on L. camara plants inoculated with C. cassiicola conidia suspension. After inoculations, fragments of the leaf blades were prepared for observation by light and scanning electron microscopy. Fungal colonization of Lantana camara was typical of a necrotroph and penetration initiated a hypersensitive response. L. camara reacted to the pathogen penetration through thickening of the epidermis walls, cytoplasm granulation and a cicatrisation tissue.
Resumo:
ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.
Resumo:
When in competition with cotton, Amaranthus retroflexus can cause high yield losses. Due to the limited availability of selective herbicides registered for post emergence control of this weed, the same herbicides have been used repeated times over the last few years, which may have selected resistant biotypes. Biotypes of A. retroflexus collected from the main areas of cotton cultivation in Brazil were submitted to dose-response trials, by applying the herbicides trifloxysulfuron-sodium and pyrithiobac-sodium in doses equivalent to 0, ¼, ½, 1, 2 and 4 times the recommended rates. Resistance to ALS inhibitors was confirmed in biotypes of A. retroflexus. Biotype MS 2 from Mato Grosso do Sul, was cross-resistant to both trifloxysulfuron-sodium and pyrithiobac-sodium, while biotype MS 1 was resistant to trifloxysulfuron-sodium only. Likewise, singular and cross resistance was also confirmed in biotypes from Goiás (GO 3, GO 4 and GO 6), in relation to trifloxysulfuronsodium and pyrithiobac-sodium. One biotype from Mato Grosso (MT 13) was not resistant to any of the ALS inhibitors evaluated in this work.
Resumo:
Iron-deficiency anemia is the nutritional deficiency most frequently occurring throughout the world, which manifests as a complex systemic disease involving all cells, affecting enzyme activities and modifying protein synthesis. In view of these considerations, the objective of the present study was to determine the effects of iron-deficiency anemia on disaccharidases and on the epithelial morphokinetics of the jejunal mucosa. Newly weaned male Wistar rats were divided into 4 groups of 10 animals each: C6w received a standard ration containing 36 mg elemental iron per kg ration for 6 weeks; E6w received an iron-poor ration (5-8 mg/kg ration) for 6 weeks; C10w received an iron-rich ration (36 mg/kg ration) for 10 weeks; E10w received an iron-poor ration for 6 weeks and then an iron-rich ration (36 mg/kg) for an additional 4 weeks. Jejunal fragments were used to measure disaccharidase content and to study cell proliferation. The following results were obtained: 1) a significant reduction (P<0.001) of animal weight, hemoglobin (Hb), serum iron and total iron-binding capacity (TIBC) in group E6w as compared to C6w; reversal of the alterations in Hb, serum iron and TIBC with iron repletion (E10w = C10w); animal weights continued to be significantly different in groups E10w and C10w. 2) Sucrase and maltase levels were unchanged; total and specific lactase levels were significantly lower in group E6w and this reduction was reversed by iron repletion (E10w = C10w). 3) The cell proliferation parameters did not differ between groups. On the basis of these results, we conclude that lactase production was influenced by iron deficiency and that this fact was not related to changes in cell population and proliferation in the intestinal mucosa
Resumo:
Low and high molecular weight kininogens (LK and HK), containing 409 and 626 amino acids with masses of ~65 and 120 kDa after glycosylation, respectively, are coded by a single gene mapped to the human chromosome 3 by alternative splicing of the transcribed mRNA. The NH2-termini Glu1-Thr383 region, identical in LK and HK, contains bradykinin (BK) moieties Arg363-Arg371. LK, HK and their kinin products Lys-BK and BK are involved in several biologic processes. They are evolutionarily conserved and only 7 patients, all apparently normal, have been reported to lack them. In one of these patients (Williams' trait), a codon mutation (Arg178 ® stop) has been blamed for the absence of LK and HK. However, using Western blots with 2 monoclonal anti-HK antibodies, one that recognizes the region common to LK and HK and the other that recognizes only HK, I detected ~110-kDa bands in the plasma of this LK/HK-deficient patient vs ~120-kDa bands in normal human and ape plasmas. With polyclonal anti-Lys-BK antibody, which strongly detects BK cleaved at its COOH-terminus in purified HK, I detected ~110-kDa bands in the normal and the deficient plasmas. Western blots with a monoclonal anti-prekallikrein (PK) antibody showed that surface activation of PK and distribution of PK activation products, both dependent on HK, were similar in these plasmas. These findings suggest that a mutant gene yielded a kininogen-like species possibly involving aberrant mRNA splicing - structurally different from normal HK, but apparently with the capacity to carry out seemingly vital HK functions.
Resumo:
Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.
Resumo:
Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.