67 resultados para Branched glycerol dialkyl glycerol tetraether
Resumo:
Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products.
Resumo:
In this work, it is proposed a simple experiment in polymer science for undergraduates, involving the glycerol polymerization catalyzed by H2SO4 to produce different materials, e.g. from oligomers to crosslinked polymer. The students can investigate the reaction conditions such as time, temperature and catalyst concentration, thus controlling the extent of polymerization and its kinetics. This experiment stimulates students to see polymer science in a broader context, involving diverse topics, such as biodiesel, and processing of a co-product of low value in polymeric materials with potential industrial application.
Resumo:
Citric acid was used as a compatibilizer in the production of starch and PBAT films plasticized with glycerol and processed by blow extrusion. Films produced were characterized by WVP, mechanical properties, FT-IR-ATR and SEM. WPV ranged from 3.71 to 12.73×10-11 g m-1 s-1 Pa-1, while tensile strength and elongation at break ranged from 1.81 to 7.15 MPa and from 8.61 to 23.63%, respectively. Increasing the citric acid concentration improved WVP and slightly decreased film resistance and elongation. The films micrographs revealed a more homogeneous material with the addition of citric acid. However, the infrared spectra revealed little about cross-linking esterification reaction
Resumo:
Currently, public policy has encouraged innovation in universities and also transference of technology to the industry. Another important stage to be considered would be the registration or filing of a patent and the economical viability study. Government programs, such as the innovation incentive program, among others, should facilitate popularization and promote interest by industry. In this work we described the steps, from the conception of the idea to the scale up going through its interest by the industry. The case study is about the glycerol conversion utilizing modified niobia as catalysts.
Resumo:
Mathematical models can help to prevent high levels of toxic substances in soil or fruits of plants treated with pesticides and indicate that such substances should be systematically monitored. The aim of this research was to study the kinetics of paclobutrazol biodegradation by soil native bacteria using mathematical models. Three models were used to assess the kinetics of paclobutrazol biodegradation obtained experimentally. Excellent fits were obtained using dual kinetic and logistic models. The use of glycerol as additional carbon source increased the biodegradation of PBZ and consequently decreased the time required for a given PBZ initial concentration be halved.
Resumo:
The objective of this work was to manufacture biodegradable films based on cassava starch, polyvinyl alcohol (PVA) and sodium montmorillonite (Na-MMT), using glycerol as a plasticizer. These films were characterized according to their microstructure, optical, mechanical, and barrier properties. The combination of starch-PVA-MMT resulted in films with a more homogeneous surface than starch films. The introduction of PVA into the starch matrix led to the formation of films with lower water vapor permeability (WVP), higher tensile strength and greater elongation. MMT was exfoliated in the films, resulting in greater stability for different relative humidities, lower WVP, higher resistance and lower flexibility.
Resumo:
Edibles films are an alternative to synthetic materials used for packing food products. Barbados cherry is rich in vitamin C and carotenoids. The aim of this study was to characterize and develop films by casting from cassava starch, lyophilized Barbados cherry pulp and glycerol. The films were characterized with respect to thickness, water vapor permeability (WVP), water solubility, vitamin C, carotene and mechanical properties. The interaction of pulp and glycerol reduced film thickness. An increase in pulp concentration up to 60% increased WVP but beyond this concentration reduced both WVP and solubility leading to an increased level of vitamin C and β carotene in the films.
Resumo:
A method based on enzymatic activities was developed using three enzymes (glycerokinase, glycerol-3-phosphate oxidase and peroxidase) and colorimetric detection for the determination of glycerol in biodiesel. The enzymatic conversion of glycerol produces H2O2 that is eliminated by the action of peroxidase, an oxygen acceptor and 4- aminoantipirine, producing water and a colored compound, which was analyzed. This method showed good linear correlation coefficient (r = 0.9937) in the concentration range of 4.95 x 10-5 to 3.96 x 10-4% (w/w) and had experimental limits of detection and quantitation of 7.10 x 10-6 and 2.10 x 10-5% (w/w), respectively.
Resumo:
Paclobutrazol is growth regulator of plants that has low mobility in soil and therefore has accumulated. The objective of this study was to investigate the paclobutrazol biodegradation in two soils from the São Francisco River Valley. The biodegradation experiments were conducted in batch using paclobutrazol and paclobutrazol added glycerol. The experiments were performed in sterile and nonsterile conditions using a mixed culture of Pseudomonas. The concentration of paclobutrazol was determined by high performance liquid chromatography. The biodegradation reached 43% in 14 days of experiments with only paclobutrazol and 70% in 28 days of experiments that contained glycerol and paclobutrazol.
Resumo:
Liquid polybutadiene (PBLH) was modified with maleic anhydride (MA). The material (PBLHM) was characterized and used to prepare hybrid materials by blending with glycerol-plasticized cassava starch (TPS) and an organophilic clay at 5 wt% content. Processing was performed by extrusion under mild conditions and led to TPS/PBLHM/clay hybrids, at 95/5 to 85/15 TPS/PBLHM compositions, which were characterized by contact angle measurements, X-ray diffraction and mechanical analysis. The results revealed a reduction in the hydrophilicity and the reinforcement of the hybrid materials. Biodegradability tests showed that the addition of clay and of PBLHM led to materials with high biodegradability.
Resumo:
A new salicylic acid derivative, pentacosanyl salicylate, was isolated from the leaves of the plant toxic to cattle, Riedeliella graciliflora, in addition to a digalactosyldiacylglycerol (DGDG), 1,2-di-O-α-linolenoyl-3-O-α-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-glycerol, kaempferol-3-O-β-D-glucopyranoside, kaempferol-3-O-α-L-rhamnopyranoside, quercetin-3-O-α-L-rhamnopyranoside, rutin, (+)-catechin and the dimer (+)-catechin-(4β-8)-catechin, glutinol, squalene, β-sitosterol, stigmasterol, phytol, β-carotene, α-tocopherol and ficaprenol-12. Their structures were determined using spectral techniques (MS, IR, and NMR-1D and 2D) and based on literature data.
Resumo:
In this work, theoretical and experimental infrared spectra of fatty acid methyl esters (FAME) contained in soybean biodiesel were analyzed seeking the assignments of the relevant vibrational modes to characterize crude soybean oil and soybean biodiesel. The results showed the usefulness of infrared spectra for monitoring saturated and unsaturated compounds as well as impurities (mainly glycerol) in raw samples. This is the first step toward proposing an efficient molecular spectroscopy routine to certify biodiesel fuel.
Resumo:
A study on the monitoring of glycerol oxidation catalyzed by gold nanoparticles supported on activated carbon under mild conditions by chemometric methods is presented. The reaction was monitored by mass spectrometry-electrospray ionization (ESI-MS) and comparatively by mid infrared spectroscopy (MIR). Concentration profiles of reagent and products were determined by chemometric tools such as Principal Component Analysis (PCA), Evolving Factor Analysis (EFA) and Multivariate Curve Resolution (MCR). The gold nanoparticle catalyst was relatively active in glycerol oxidation, favoring formation of high added value products. It was found that the reaction stabilization was reached at four hours, with approximately 70% glycerol conversion and high selectivity for glycerate.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
1,3-propanediol is a high-value specialty chemical which has many industrial applications. Its main use is the production of the polymer polypropylene terephthalate, a thermoplastic used in the textile and automobile industries. The interest in 1,3-propanediol production from glycerol bio-conversion has increased after the employment of biodiesel by various countries, being produced by chemical synthesis from petroleum intermediates or biotechnologically by microbial fermentation. Glycerol is an abundant low-cost byproduct from biodiesel refineries, and it is the only substrate that can be naturally or enzymatically converted to 1,3-propanediol by microbial fermentation. In this review, information on 1,3-propanediol's importance, production and purification are presented, along with results from recent research on glycerol microbial conversion to 1,3-propanediol. The bio-production of this intermediate compound from glycerol is very attractive both economically and environmentally, since it allows the replacement of fossil fuels by renewable resources.