84 resultados para Biological soil crusts formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic diversity of ten Bradyrhizobium strains was evaluated for tolerance to high temperatures, to different salinity levels and for the efficiency of symbiosis with cowpea plants (Vigna unguiculata (L.) Walp.). Eight of these strains were isolated from nodules that appeared on cowpea after inoculation with suspensions of soil sampled from around the root system of Sesbania virgata (wand riverhemp) in ecosystems of South Minas Gerais. The other two strains used in our analyses as references, were from the Amazon and are currently recommended as cowpea inoculants. Genetic diversity was analyzed by amplifying repetitive DNA elements with the BOX primer, revealing high genetic diversity with each strain presenting a unique band profile. Leonard jar assays showed that the strains UFLA 03-30 and UFLA 03-38 had the highest N2-fixing potentials in symbiosis with cowpea. These strains had more shoot and nodule dry matter, more shoot N accumulation, and a higher relative efficiency than the strains recommended as inoculants. All strains grew in media of pH levels ranging from 4.0 to 9.0. The strains with the highest N2-fixing efficiencies in symbiosis with cowpea were also tolerant to the greatest number of antibiotics. However, these strains also had the lowest tolerance to high salt concentrations. All strains, with the exceptions of UFLA 03-84 and UFLA 03-37, tolerated temperatures of up to 40 ºC. The genetic and phenotypic characteristics of the eight strains isolated from soils of the same region were highly variable, as well as their symbiotic efficiencies, despite their common origin. This variability highlights the importance of including these tests in the selection of cowpea inoculant strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil structure transformation from ferralic to nitic horizons was studied in a toposequence on quaternary red clayey sediments and diabase in Piracicaba (SP), Brazil. Morphological and micromorphological studies, image analysis, soil water characteristic curves and monitoring of (total) soil water potential head were used. The presence of polyconcave vughs, clayskins and planar voids shows that the vertical and lateral transition and structural transformation from ferralic to nitic horizons is given by the coalescence of the microaggregates, probably due to tensions created in a drier period in the past. Changes to a more humid climate with a defined dry season and alternate drying and wetting cycles resulted in the fissuration of the previously coalesced material, forming polyhedral aggregates and microaggregates. Simultaneously, clay illuviation filled the voids and together with the compacting action of the biological activity of these soils contributed to the coalescence of microaggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil water availability to plants is affected by soil compaction and other variables. The Least Limiting Water Range (LLWR) comprises soil physical variables affecting root growth and soil water availability, and can be managed by either mechanical or biological methods. There is evidence that effects of crop rotations could last longer than chiseling, so the objective of this study was to assess the effect of soil chiseling or growing cover crops under no-till (NT) on the LLWR. Crop rotations involving triticale (X Triticosecale) and sunflower (Helianthus annuus) in the fall-winter associated with millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and sunn hemp (Crotalaria juncea) as cover crops preceding soybean (Glycine max) were repeated for three consecutive years. In the treatment with chiseling (performed only in the first year), the area was left fallow between the fall-winter and summer crops. The experiment was carried out in Botucatu, São Paulo State, Brazil, from 2003 to 2006 on a Typic Rhodudalf. The LLWR was determined in soil samples taken from the layers 0-20 cm and 20- 40 cm, after chemical desiccation of the cover crops in December of the first and third year of the experiment. Chiseling decreases soil bulk density in the 0-20 cm soil layer, increasing the LLWR magnitude by lowering the soil water content at which penetration resistance reaches 2.0 MPa; this effect is present up to the third year after chiseling and can reach to a depth of 0.40 m. Crop rotations involving sunflower + sunn hemp, triticale + millet and triticale + sunn hemp for three years prevented soil bulk density from exceeding the critical soil bulk density in the 0- 0.20 m layer. This effect was observed to a depth of 0.40 m after three years of chiseling under crop rotations involving forage sorghum. Hence, chiseling and some crop rotations under no tillage are effective in increasing soil quality assessed by the LLWR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB) during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1) Black oat straw (Avena strigosa Schreb.); 2) Rye straw (Secale cereale L.); 3) Common vetch straw (Vicia sativa L.). The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB) were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil β-glucosidase participates in the final step of cellulose biodegradation. It is significant in the soil C cycle and is used as an indicator of the biological fertility of soil. However, the response of its kinetic parameters to environmental temperature and moisture regimes is not well understood. This study tested the β-glucosidase response in the main agricultural soils (black soil, albic soil, brown soil, and cinnamon soil) of Northeast China. Incubation tests were conducted to measure the kinetic parameters Km, Vmax or Vmax/Km of soil β-glucosidase at environmental temperatures of 10, 20 and 30 ºC and at 10, 20 and 30 % soil moisture content. The insensitive response of the kinetic parameters to temperature changes indicates that soil β-glucosidase was present primarily in immobilized form. The significant response of the kinetic parameters of soil β-glucosidase to soil moisture rather than to environmental temperatures suggests that the catalytic ability of soil β-glucosidase was sensitive to changing soil moisture regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane production should be integrated with crop diversification with a view to competitive and sustainable results in economic, social and environmental aspects. The purpose of this study was to assess the influence of different soil uses during the sugarcane fallow period on the chemical and physical properties of eutroferric Red Latosol - LVef (Oxisol) and Acric Latosol - LVw (Acric Oxisol), in Jaboticabal, São Paulo State, Brazil (21º14'05'' S, 48º17'09'' W, 600 m asl). A randomized block design was used with five replications and four treatments, consisting of different soil uses (crops) in the sugarcane fallow period: soybean only, soybean/fallow/soybean, soybean/millet/soybean, and soybean/sunn hemp/soybean. After two soybean crops, the LVef chemical properties remained at intermediate to high levels; while those of the LVw, classified as intermediate to high in the beginning, increased to high levels. Thus, the different soil uses during the sugarcane fallow period allowed the maintenance of LVef fertility levels and the improvement of those of the LVw. Two soybean crops increased macroporosity in the 0.0-0.1 m layer of the LVef; reduced soil aggregates in the 0.0-0.1 and 0.1-0.2 m layers of both soils, and reduced aggregate stability in these two layers of the LVw. Planting pearl millet or sunn hemp between the two soybean growing seasons promoted the formation of larger soil aggregates in the surface layer (0.0-0.1 m) of the LVw.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay) and an Oxisol (clay). The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1), with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC) and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Technologies setting at Agricultural production system have the main characteristics the vertical productivity, reduced costs, soil physical, chemical and biological improvement to promote production sustainable growth. Thus, the study aimed to determine the variability and the linear and special correlations between the plant and soil attributes in order to select and indicate good representation of soil physical quality for forage productivity. In the growing season of 2006, on the Fazenda Bonança in Pereira Barreto (SP), the productivity of autumn corn forage (FDM) in an irrigated no-tillage system and the soil physical properties were analyzed. The purpose was to study the variability and the linear and spatial correlations between the plant and soil properties, to select an indicator of soil physical quality related to corn forage yield. A geostatistical grid was installed to collect soil and plant data, with 125 sampling points in an area of 2,500 m². The results show that the studied properties did not vary randomly and that data variability was low to very high, with well-defined spatial patterns, ranging from 7.8 to 38.0 m. On the other hand, the linear correlation between the plant and the soil properties was low and highly significant. The pairs forage dry matter versus microporosity and stem diameter versus bulk density were best correlated in the 0-0.10 m layer, while the other pairs - forage dry matter versus macro - and total porosity - were inversely correlated in the same layer. However, from the spatial point of view, there was a high inverse correlation between forage dry matter with microporosity, so that microporosity in the 0-0.10 m layer can be considered a good indicator of soil physical quality, with a view to corn forage yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In view of the importance of the macroporosity for the water transport properties of soils, its quantitative assessment is a challenging task. Measurements of hydraulic conductivity (K) at different soil water tensions and the quantification of water-conducting macropores (θM) of a soil under different tillage systems could help understand the effects on the soil porous system and related hydraulic properties. The purpose of this study was to assess the effects of Conventional Tillage (CT), Chisel Plow (CP) and No Tillage (NT) on θM and on K; and to quantify the contribution of macroporosity to total water flux in a loam soil. A tension disc infiltrometer was used at two soil water pressure heads (-5 cm, and 0) to infer θM and K, during fallow. Macroporosity was determined based on the flow contribution between 0 and -5 cm water potentials (K0, K5, respectively), according to the Hagen-Poiseuille equation. The K0 values were statistically higher for CT than for NT and CP. The K5 values did not differ statistically among treatments. The mean K values varied between 0.20 and 3.70 cm/h. For CT, θM was significantly greater than for CP and NT, following the same trend as K0. No differences in θM were detected between CP and NT. With CT, the formation of water-conducting macropores with persistence until post-harvest was possible, while under CP preparation, the water-conducting macropores were not persistent. These results support the idea that tillage affects the soil water movement mainly by the resulting water-conducting macropores. Future studies on tillage effects on water movement should focus on macroporosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest). The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively). In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa) in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively). Of all forest stands, the mimosa area had the most abundant soil fauna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital information generates the possibility of a high degree of redundancy in the data available for fitting predictive models used for Digital Soil Mapping (DSM). Among these models, the Decision Tree (DT) technique has been increasingly applied due to its capacity of dealing with large datasets. The purpose of this study was to evaluate the impact of the data volume used to generate the DT models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern region of the State of Rio Grande do Sul. The soil-landscape relationship was obtained from reambulation of the studied area and the alignment of the units in the 1:50,000 scale topographic mapping. Six predictive covariates linked to the factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15, 20 and 25 % of the total data volume, were used to generate the predictive DT models in the data mining program Waikato Environment for Knowledge Analysis (WEKA). In this study, sample densities below 5 % resulted in models with lower power of capturing the complexity of the spatial distribution of the soil in the study area. The relation between the data volume to be handled and the predictive capacity of the models was best for samples between 5 and 15 %. For the models based on these sample densities, the collected field data indicated an accuracy of predictive mapping close to 70 %.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.