34 resultados para Biodegradation
Resumo:
Polymer recycling has been one of the most important trend in the petrochemical area. Among different technologies, biotechnological (enzymatic and/or microbial) degradation of polymers for the recovery of monomers and oligomers is environmentally-friendly and meet some green chemistry principles. In this work, conditions for the biotechnological degradation of some industrially-relevant polymers (e.g. poly(ethylene terephthalate) and polyethylene) were revised, and the main biocatalysts were identified. In most cases, biodegradation mechanisms are still unclear, thus being necessary more studies to unravel these promising bioprocesses. Polymer biodegradation studies also present considerable importance for other fields, including biomedical and agricultural.
Resumo:
The objective this study has been the selection of lipase productor microorganism, for removal of oils and grease, in the pre-treatment of biodiesel wastewater washing. For this, analyses of the physicist-chemistries characteristics had been made with the wastewater of the biodiesel washing, and then it had been isolated and chosen, by means of determinations of the lipase activity. Following, it was made a test of fat biodegradation, in the conditions: pH (5.95), temperature (35 ºC), rotation (180 rpm) and ammonium sulfate as nitrogen source (3 g L-1) and establishing as variable the two microorganism preselected and the time (24; 48; 72; 96 and 120 h). The biodiesel purification wastewater had presented high potential of environmental impact, presenting a concentration of O of 6.76 g L-1. From the six isolated microbiological cultures, two microorganisms (A and B) had been selected, with enzymatic index of 0.56 and 0.57, respectively. The treatment of the wastewater using the isolated microorganism (Klebsiella oxytoca) had 80% of the fatty removal in 48 h.
Resumo:
Sanitary landfill leachates present high concentrations of carbonaceous and nitrogenous materials. The crucial point is that carbonaceous materials are of difficult biodegradation, what compromises the performance of biological treatment processes, while nitrogenous materials, such as ammonia nitrogen, probably preclude the use of biological treatments. Therefore, the aim of this work was to study the desorption process of ammonia nitrogen from sanitary landfill leachate in filling towers. Desorption was carried out in filling towers of 35 L capacity. The leachate was collected from a sanitary landfill located in João Pessoa, Paraíba State, Brazil. Desorption efficiency for the pH values adopted in four treatments was 93% minimum and 95.5% maximum, with aeration mean time ranging from 3 to 6 hours. The limiting factors of ammonia nitrogen desorption from sanitary landfill leachates in filling towers are associated with the use of alkalizer species for pH correction, and electricity costs for aeration.
Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids
Resumo:
Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use