90 resultados para Biodegradação de hidrocarbonetos aromáticos
Resumo:
The main goal of this work was to study the biodegradation of phenol in batch mode by a filamentous fungus isolated from a contaminated site in Southern Brazil. A better performance was obtained by previous adaptation of the microorganism to the toxic chemical. A 2³ experimental design was proposed and it could be observed total phenol degradation in 72 h using 500 mg L-1 glucose, inoculum of 20% and agitation of 200 rpm, resulting a biodegradation rate of 3.76 mg L-1 h-1. In relation to phenol tolerance, Aspergillus sp. LEBM2 was able to consume up to 989 ± 15 mg L-1.
Resumo:
Porous ceramic materials based on calcium phosphate compounds (CPC) have been studied aiming at different biomedical applications such as implants, drug delivery systems and radioactive sources for brachytherapy. Two kinds of hydroxyapatite (HAp) powders and their ceramic bodies were characterized by a combination of different techniques (XRF, BET method, SEM, ICP/AES and neutron activation analysis - NAA) to evaluate their physico-chemical and microstructural characteristics in terms of chemical composition, segregated phases, microstructure, porosity, chemical and thermal stability, biodegradation and incorporation of substances in their structures. The results revealed that these systems presented potential for use as porous biodegradable radioactive sources able to be loaded with a wide range of radionuclides for cancer treatment by the brachytherapy technique.
Resumo:
Over the last decade, evidences have been shown that the wood biodegradation by fungi is not only a result of the action of their enzymatic machinery but also of various low molecular weight non-enzymatic compounds, especially in fungi that promote brown and white decay, which in nature are the major wood decaying microorganisms. The present review focuses on the recent theories involving these low molecular weight compounds that act direct or synergistically with lignocellulolytic enzymes to attack the wood main macromolecular constituents, their relevance as potential degradative systems, in the overall wood biodegradation, and also outlines their potential biotechnological applications.
Resumo:
The inputs of organic matter derived from natural and anthropogenic sources to Sepetiba Bay were investigated by using aliphatic hydrocarbons and sterols in superficial sediments. Concentrations ranged from 0.26 to 2.65 μg g-1, <0.01 to 17.41 μg g-1 and 0.77 and 9.24 μg g-1 for n-alkanes, UCM (unresolved complex mixture) and total sterols, respectively. The selected markers and ratios among individual compounds showed the major contribution of terrestrial sources to the total pool of sedimentary organic matter in the bay, but the accumulation of autochthonous organic matter increased with distance from the shoreline. The input of petroleum hydrocarbons and sewage (coprostanol in the range 0.01 to 0.43 μg g-1) were also detected, especially in the more urbanized regions of the bay, but at lower levels of contamination when compared to estuaries in other Brazilian coastal regions.
Resumo:
Wood is the main raw material used in the pulp and paper industry. It is a material that presents heterogeneous structure and complex composition, which results in a relatively resistant material to the biodegradation process. In the present review, we attempted to summarize the structural characteristics of wood and describe the chemical nature of its major components to, afterwards, comment about its biodegradation. The role of the enzyme manganese peroxidase in the lignin degradation by a selective white-rot fungus, Ceriporiopsis subvermispora, was highlighted.
Resumo:
Tucker-3 model offers several advantages for analysis of environmental data but its interpretation is still challenging. A Tucker-3 model was applied to a biodegradation experiment involving a large number of overlapped chromatographic peaks and a temporal variation. The Tucker-3 model allowed the data to be decomposed in two processes: evaporation and biodegradation. The results suggest that linear hydrocarbons were those biodegraded first and demonstrate that the data analysis can be simplified by interpreting the elements of the core array. The approach discussed in this work can be applied in similar problems involving multi-way data in other areas of chemistry.
Resumo:
The adipic and phthalic acid esters are plasticizers, have low water solubility, high partition octanol/water coefficients (Kow) and accumulate in soil and sediments. These compounds are considered teratogenic, carcinogenic and endocrine disruptors chemicals. This study evaluated the bioremediation of tropical soil contaminated with plasticizers process wastes, in aerobic conditions, with and without introduction of acclimated bacteria. It was selected 200 kg of contaminated tropical soil for the biodegradation study. The plasticizers concentrations in soil ranged between 153 mgDOA/kg up to 15552 mgDIDP/kg and after 90 days of biodegradation, the lower removal efficiencies were 72% with a 1-2 log simultaneous bacterial growth.
Resumo:
In this work a new method (SPME-GC/FID) was developed to analyze the activity of binary liquid mixtures. The purpose is to demonstrate that SPME is capable to be used to determinate activity coefficients at infinite dilution knowing the fiber properties, with a lower cost than the conventional methods encountered in literature such as GLC. The activity coefficients at infinite dilution in furfural for n-hexane, n-heptane and cyclohexane at 298.15 K was determined using SPME and deviations of literature data was about 7%.
Resumo:
The kinetics of biodegradation by the fungus Ganoderma sp of textile dyes Yellow, Blue and Red Procion were studied in effluents using UV-Vis spectroscopy, Partial Least Squares Regression (PLS) and univariate analysis. The kinetic of the reactions were founded intermediate between first and second orders and the rate constants were calculated. The biodegradation after 72 h at 28 ºC were 33.6, 43.5 and 57.7% for the dyes Yellow, Blue and Red Procion, respectively. The quantitative analysis of the effluent by HPLC method can not be used without previous separation.
Resumo:
The goal of this research was to evaluate the biodegradation of diesel by a microbial consortium collected in a region close to distributors of fuel. The experiments were monitored by SPME-GC-FID and SPME-GC-MS. The consortium showed a high potential for production of biosurfactants, presenting an emulsification index of 53%. The consortium degraded completely n-alkanes, while dimethylnaphtalene, hepthyl-cyclohexane and 2,6,10-trimethyl-undecane were partially degraded and pristane was not degraded. From this consortium five strains were isolated and identified as Acinetobacter baumannii. Based on this initial investigation this consortium appears to be effective for bioremediation in Porto Velho - RO region.
Resumo:
The biodegradation of lignocellulosic materials is an important natural process because it is responsible for the carbon recycling. When induced under controlled conditions, this process can be used for technological applications such as biopulping, biobleaching of cellulosic pulps, pre-treatment for subsequent saccharification and cellulosic-ethanol production, and increase of the digestibility in agroindustrial residues used for animal feed. In the present work, the enzymatic and non-enzymatic mechanisms involved in the biodegradation of lignocellulosic materials by fungi were reviewed. Furthermore, the technological applications of these extracellular metabolites are presented and discussed.
Resumo:
Mathematical models can help to prevent high levels of toxic substances in soil or fruits of plants treated with pesticides and indicate that such substances should be systematically monitored. The aim of this research was to study the kinetics of paclobutrazol biodegradation by soil native bacteria using mathematical models. Three models were used to assess the kinetics of paclobutrazol biodegradation obtained experimentally. Excellent fits were obtained using dual kinetic and logistic models. The use of glycerol as additional carbon source increased the biodegradation of PBZ and consequently decreased the time required for a given PBZ initial concentration be halved.
Resumo:
This work describes an undergraduate experiment for the synthesis of Knoevenagel adduct of Meldrum's acid with nine aromatic aldehydes, using water as the solvent, in an adaptation of a previously reported synthetic protocol. The synthesis was straightforward, requiring a period of two hours, and is suitable for undergraduate experimental courses on green chemistry. In addition, quantitative analyses of the relative reactivity of p-nitro-benzaldehyde and p-metoxi-benzaldehyde was evaluated through the competitive reaction of equimolar amounts of these aldehydes with one equivalent of Meldrum's acid, using gas chromatography to quantify the composition of the reaction mixture.
Resumo:
Poly(D,L-lactide), PDLLA, is a polymer with potential applications in medical, environmental, and pharmaceutical areas. Despite its versatility, the hydrophobicity limits its applications. To overcome this problem, one strategy is the preparation of blends with hydrophilic polymers such as poly(vinylpyrrolidone), PVP. In this study, we report the preparation and characterization of blends based on PDLLA and PVP and the biodegradation studies by the Sturm test. It was observed that the components of the blends PDLLA/PVP are thermodynamically immiscible, however the biodegradation is faster than that of pure PDLLA.
Resumo:
Paclobutrazol is growth regulator of plants that has low mobility in soil and therefore has accumulated. The objective of this study was to investigate the paclobutrazol biodegradation in two soils from the São Francisco River Valley. The biodegradation experiments were conducted in batch using paclobutrazol and paclobutrazol added glycerol. The experiments were performed in sterile and nonsterile conditions using a mixed culture of Pseudomonas. The concentration of paclobutrazol was determined by high performance liquid chromatography. The biodegradation reached 43% in 14 days of experiments with only paclobutrazol and 70% in 28 days of experiments that contained glycerol and paclobutrazol.