64 resultados para Balanced Crystalloid
Resumo:
Philander opossum and Didelphis marsupialis considered the most ancient mammals and an evolutionary success, maintain parasitism by Trypanosoma cruzi without developing any apparent disease or important tissue lesion. In order to elucidate this well-balanced interaction, we decided to compare the humoral immune response kinetics of the two didelphids naturally and experimentally infected with T. cruzi and immunized by different schedules of parasite antigens, employing an indirect fluorescence antibody test (IFAT). Both didelphids responded with high serological titers to different immunization routes, while the earliest response occurred with the intradermic route. Serological titers of naturally infected P. opossum showed a significant individual variation, while those of D. marsupialis remained stable during the entire follow-up period. The serological titers of the experimentally infected animals varied according to the inoculated strain. Our data suggest that (1) IFAT was sensitive for follow-up of P. opossum in natural and experimental T. cruzi infections; (2) both P. opossum and D. marsupialis are able to mount an efficient humoral immune response as compared to placental mammals; (3) experimentally infected P. opossum and D. marsupialis present distinct patterns of infection, depending on the subpopulation of T. cruzi, (4) the differences observed in the humoral immune responses between P. opossum and D. marsupialis, probably, reflect distinct strategies selected by these animals during their coevolution with T. cruzi.
Resumo:
The main clinical forms of Chagas disease (acute, indeterminate and chronic cardiac) present strong evidences for the participation of the immune system on pathogenesis. Although parasite multiplication is evident during acute infection, the intense acute myocarditis of this phase exhibits clear ultrastructural signs of cell-mediated immune damage, inflicted to parasitized and non-parasitized myocardiocytes and to the endothelium of myocardial capillaries (microangiopathy). Inflammation subsides almost completely when immunity decreases parasite load and suppressor factors modulate host reaction, but inflammation does not disappear when the disease enters the indeterminate phase. Inflammation becomes mild and focal and undergoes cyclic changes leading to complete resolution. However, the process is maintained because the disappearance of old focal lesions is balanced by the upsurge of new ones. This equilibrium allows for prolonged host survival in the absence of symptoms or signs of disease. The chronic cardiac form is represented by a delayed-type, cell-mediated diffuse myocarditis, that probably ensues when the suppressive mechanisms, operative during the indeterminate phase, become defaulted. The mechanism responsible for the transition from the indeterminate to the cardiac form, is poorly understood.
Resumo:
The opportunities and challenges for the study and control of parasitic diseases in the 21st century are both exciting and daunting. Based on the contributions from this field over the last part of the 20th century, we should expect new biologic concepts will continue to come from this discipline to enrich the general area of biomedical research. The general nature of such a broad category of infections is difficult to distill, but they often depend on well-orchestrated, complex life cycles and they often involve chronic, relatively well-balanced host/parasite relationships. Such characteristics force biological systems to their limits, and this may be why studies of these diseases have made fundamental contributions to molecular biology, cell biology and immunology. However, if these findings are to continue apace, parasitologists must capitalize on the new findings being generated though genomics, bioinformatics, proteomics, and genetic manipulations of both host and parasite. Furthermore, they must do so based on sound biological insights and the use of hypothesis-driven studies of these complex systems. A major challenge over the next century will be to capitalize on these new findings and translate them into successful, sustainable strategies for control, elimination and eradication of the parasitic diseases that pose major public health threats to the physical and cognitive development and health of so many people worldwide.
Resumo:
In schistosomiasis, granuloma formation to parasite eggs signals the beginning of a chronic and potentially life-threatening disease. Granulomas are strictly mediated by CD4+ T helper (Th) cells specific for egg antigens; however, the number and identity of these T cell-sensitizing molecules are largely unknown. We have used monoclonal T cell reagents derived from egg-sensitized individuals as probes to track down, isolate and positively identify several egg antigens; this approach implicitly assures that the molecules of interest are T cell immunogens and, hence, potentially pathogenic. The best studied and most abundant egg component is the Sm-p40 antigen. Sm-p40 and its peptide 234-246 elicit a strikingly immunodominant Th-1-polarized response in C3H and CBA mice, which are H-2k strains characterized by severe egg-induced immunopathology. Two additional recently described T cell-sensitizing egg antigens are Schistosoma mansoni phosphoenolpyruvate carboxykinase (Sm-PEPCK) and thioredoxin peroxidase-1 (Sm-TPx-1). In contrast to Sm-p40, both of these molecules induce a more balanced Th-1/Th-2 response, and are relatively stronger antigens in C57BL/6 mice, which develop smaller egg granulomas. Importantly, Sm-p40 and Sm-PEPCK have demonstrated immunogenicity in humans. The findings in the murine model introduce the important notion that egg antigens can vary significantly in immunogenicity according to the host's genetic background. A better knowledge of the principal immunogenic egg components is necessary to determine whether the immune responses to certain antigens can serve as indicators or predictors of the form and severity of clinical disease, and to ascertain whether such responses can be manipulated for the purpose of reducing pathology.
Resumo:
Eye colour of Triatoma infestans is controlled at a single autosomal locus, with black-eye as the dominant gene and red-eye as the recessive. Inheritance of these characters follows a classical Mendelian system, enabling eye colour to be used as a marker for studies of mating frequency. We found no significant differences in oviposition rates and egg hatching rates irrespective of parental phenotypes. Different mating schedules between red-eye and black-eye parents showed that eye colour did not affect mating competence. Females mated with a single male or with different males together or in succession produced similar numbers of fertile eggs, with the eye colour of the offspring reflecting exposure to the different males. We conclude that although a single mating can provide sufficient sperm for the whole reproductive life of the female, multiple matings can result in balanced assortative sperm usage from the spermatheca.
Resumo:
Weaning Swiss mice were percutaneously infected with 30 cercariae of Schistosoma mansoni and submitted to a shifting either from a deficient to a balanced diet or vice-versa, for 24 weeks. The nutritional status was weekly evaluated by measurements of growth curves and food intake. Hepatic fibrosis and periovular granulomas were studied by histological, morphometric and biochemical methods. All mice fed on a deficient diet failed to develop periportal "pipestem" fibrosis after chronic infection. An unexpected finding was the absence of pipestem fibrosis in mice on normal diet, probably related to the sample size. The lower values for nutritional parameters were mainly due to the deficient diet, rather than to infection. Liver/body weight ratio was higher in "early undernutrition" group, after shifting to the balanced diet. Volume density and numerical density of egg granulomas reached lowest values in undernourished animals. The amount of collagen was reduced in undernourished mice, attaining higher concentrations in well-fed controls and in "late undernutrition" (balanced diet shifted to a deficient one), where collagen deposition appeared increased in granulomas. That finding suggested interference with collagen degradation and resorption in "late" undernourished animals. Thus, host nutritional status plays a role in connective tissue changes of hepatic schistosomiasis in mice.
Resumo:
In this paper, four different approaches attempting to reproduce the schistosomal liver fibrosis in undernourished mice are reported: shifting from a deficient to a balanced diet and vice-versa, repeated infections, influence of the genetic background, and immunological response. Infections were performed with 30 cercariae of Schistosoma mansoni and lasted at least four months. Undernourished mice were unable to reproduce the picture of "pipestem" fibrosis, except the C57 BL/10 inbred strain, four out of 21 mice developing the liver lesion. A link of this histological finding to the type of parasite strain can not be discarded at the moment. Repeated infections increased collagen deposition mainly in well nourished animals (seven out of 16 Swiss mice developed "pipestem"-like fibrosis). In undernourished infected Swiss mice the serum levels of soluble egg antigen specific antibodies IgG1, IgG2a, IgG2b, and IgG3 were two to four times lower than those detected for well nourished controls. The decreased humoral immune response coupled to the morphological, morphometric, and biochemical results reinforce the influence of the host nutritional status on the connective tissue changes of hepatic schistosomiasis.
Resumo:
Three isosporan species are described from the double-collared seedeater, Sporophila caerulescens from Eastern Brazil. Isospora sporophilae n. sp. oocysts spherical to subspherical; oocyst wall bi-layered, smooth, inner layer colorless to pale yellowish, 21.6 × 20.9 (19.20-23.20 × 18.40-22.60) µm, shape-index 1.03 ± 0.02 (1-1.10), with no micropyle or oocyst residuum. Polar bodies splinter-like or comma-like. Sporocysts ovoidal, 15.2 × 10.6 (17.40-12.80 × 12.60-8.40) µm, shape-index 1.43 ± 0.14 (1.17-1.81), with knob-like Stieda body and residuum. Large crystalloid body in the center of the sporocyst. Isospora flausinoi n. sp. oocysts spherical to subspherical, oocyst wall bi-layered, smooth, colorless, 17.30 x 16.53 (14-20 × 13.60-20) µm, shape-index 1.05 ± 0.04 (1-1.21). Micropyle and oocyst residuum absent; presence of a large polar body. Sporocyst piriform, 14.88 x 10.70 (11.80-18 × 8-12.40) µm, shape-index 1.40 ± 0.18 (1.07-1.77), with smooth, thin, single-layered wall. Sporocyst with rounded Stieda body with no substieda body, and residuum composed of granular material. Isospora teixeirafilhoi n. sp. oocysts spherical to subspherical, oocyst wall bi-layered, smooth, colorless, 17.41 x 16.81 (15.60 19.40 × 14.20-18.80) µm. Shape-index 1.04 ± 0.08 (1-1.12). Micropyle and oocyst residuum absent; presence of a small double-lobuled polar body. Sporocyst ovoid, 11.74 × 8.12 (9-14.20 × 6.20-9.40) µm. Shape-index 1.46 ± 0.23 (1.06-1.88). Sporocyst with knob-like Stieda body, no sub-Stieda body and residuum composed of granular material.
Resumo:
Schistosoma mansoni infected C57Bl/6 inducible nitric oxide synthase (iNOS)-deficient and non-deficient malnourished mice, both fed a balanced controlled diet were studied. Interleukins, IL-4 and IL-10 responses to soluble egg antigens (SEA) 90 days after infection, were determined. Our results suggest that in iNOS deficient, malnourished mice, 90 days after of infection, nitric oxide has a downregulating effect on IL-4 and IL-10 production. We are currently investigating the biological significance of these findings.
Resumo:
There is a general consensus that during chronic Trypanosoma cruzi infection, the host immune system induces complex processes to ensure the control of parasite growth while preserving the potential to mount and maintain a life-long controlled humoral and cellular immune response against the invading pathogen. This review summarises evidence in an attempt to elucidate "what must be understood" to further clarify the role of innate immunity in the development/maintenance of clinical Chagas disease and the impact of etiological treatment on host immunity, highlighting the contributions of the innate immunity and regulatory T (Treg) cells. Recently, increasing focus on innate immunity suggest that chronic T. cruzi infection may cause morbidity when innate effector functions, or the down-regulation of adaptive regulatory mechanisms are lacking. In this context, stable asymptomatic host-parasite interactions seem to be influenced by the effector/regulatory balance with the participation of macrophages, natural killer (NK) and CD8+ T cells in parallel with the establishment of regulatory mechanisms mediated by NKT and Treg cells. Moreover, a balanced innate immune activation state, apart from Treg cells, may play a role in controlling the adverse events triggered by the massive antigen release induced by trypanosomicidal agents during Chagas disease etiological treatment.
Resumo:
Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL) characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts). We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1), which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.
Resumo:
No presente estudo, tomou-se como ponto de partida pesquisa em que se discutem possibilidades de as empresas alcançarem valor superior com base no alinhamento estratégico, na gestão do capital intelectual e na adoção do Balanced Scorecard (BSC). Investigou-se a associação entre a geração de valor e os componentes do capital intelectual segundo preceitos, entre outros, de Stewart (1999; 2001) M'Pherson e Pike (2001) e Kaplan e Norton (2004), além de trazer à tona a questão da implementação e extensão da utiliza- ção do Balanced Scorecard. As proxies empregadas para caracte- rizar geração de valor foram a média do price-to-book value (razão entre o valor de mercado e o valor patrimonial) e o retorno médio das ações no período estudado. Para caracterizar os componentes do capital intelectual, adotaram-se índices computados a partir da percepção de executivos de topo responsáveis por processos corporativos de planejamento e controle, com base na revisão de literatura e com base em procedimento de fatoração. O estudo utilizou testes não paramétricos para identificar se há evidências de diferente apreciação e retorno no mercado acionário para segmentos homogêneos de empresas com perfis diferenciados quanto aos índices de capital intelectual. Os resultados mostraram-se conclusivos e significantes - em reforço à proposição de sintonia entre a percepção do valor sob o enfoque do mercado de capitais e a percepção da performance em múltiplas perspectivas por parte de gestores. Quanto à adoção do BSC, foram identificados indícios de interferência favorável à performance nas empresas classificadas como de melhores padrões de geração de valor.
Resumo:
It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.
Resumo:
Balanced fertilization is important for plant growth. There is little information on physic nut (Jatropha curcas L.) and tests with the fertilization of the species are very recent. This study evaluated the initial growth of physic nut seedlings in response to NPK rates to Quartzarenic Neossol in a greenhouse and estimated P and K critical soil levels and N, P and K in shoot dry matter after 120 days of evaluation. The treatments were arranged in a randomized, fractional factorial design (4 x 4 x 4)½, totalizing 32 treatments with three replicates, 96 experimental plots and N rates (0, 75, 150 and 300 mg dm-3) as urea; P rates (0, 45, 90 and 180 mg dm-3) as triple superphosphate and K rates (0, 50, 100 and 200 mg dm-3) as potassium chloride. After 120 days, the plants were harvested and some variables evaluated: plant height, stem diameter, shoot and root dry weight, macro and micronutrient levels in plant shoots, and soil chemical properties. The physic nut seedlings responded to NPK fertilizer in the initial growth phase; the response to N was negative. The recommended P and K rates were 25 and 67 mg dm-3, respectively. The critical levels, corresponding to the recommended P rate were 13 and 74 mg dm-3 for K in soil (Mehlich-1). The N, P and K levels in the shoot dry matter of physic nut were 37.4, 2.1 and 35.7 g kg-1, respectively.
Resumo:
Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.