121 resultados para Bacterial nitrogen fixation, cluster
Resumo:
The objective of this work was to determine the effect of incorporation timing of the velvet bean (Stizolobium cinereum) (GM) on both organic broccoli yield and N status. Mineral N content in the soil, biologically fixed N recovery by broccoli, GM biomass decomposition and N release kinetics were also determined. Plots were fertilized with 12 Mg ha-1 of organic compost and received GM either at 0, 15, 30 or 45 days after transplant. Other treatments were compost (12 or 25 Mg ha-1), GM, mineral fertilizers and control (no fertilizer). The data were collected in four completely randomized blocks. GM decomposition increased mineral N content in soil as rapidly as mineral fertilizer or the supply of 25 Mg ha-1 of compost. The N half-life in GM (24 days) is smaller than the mass half-life (35 days) and the biological fixation contributed with 23.6% of N present in the aboveground biomass of broccoli. The result suggests a higher synchrony between the crop relative growth rate and N release from the GM when incorporated at crop early growth stage. The incorporation of GM until 15 days after transplanting replaces 50% of the highest compost dose, without yield loss.
Resumo:
A 16S rRNA gene PCR-based assay was developed aiming at a fast molecular diagnostic method to differentiate the two phylogenetically closely related species Bradyrhizobium japonicum and B. elkanii, isolated from soybean nodules, in order to identify those more competitive and comprising greater nitrogen fixation ability for use in the formulation of commercial inoculants. The assay used was able to discriminate ten reference strains belonging to these two Bradyrhizobium species, as well as to efficiently identify 37 strains isolated from fields cultivated with soybean.
Resumo:
The objective of this work was to evaluate elephant grass (Pennisetum purpureum Schum.) genotypes for bioenergy production by direct biomass combustion. Five elephant grass genotypes grown in two different soil types, both of low fertility, were evaluated. The experiment was carried out at Embrapa Agrobiologia field station in Seropédica, RJ, Brazil. The design was in randomized complete blocks, with split plots and four replicates. The genotypes studied were Cameroon, Bag 02, Gramafante, Roxo and CNPGL F06-3. Evaluations were made for biomass production, total biomass nitrogen, biomass nitrogen from biological fixation, carbon/nitrogen and stem/leaf ratios, and contents of fiber, lignin, cellulose and ash. The dry matter yields ranged from 45 to 67 Mg ha-1. Genotype Roxo had the lowest yield and genotypes Bag 02 and Cameroon had the highest ones. The biomass nitrogen accumulation varied from 240 to 343 kg ha-1. The plant nitrogen from biological fixation was 51% in average. The carbon/nitrogen and stem/leaf ratios and the contents of fiber, lignin, cellulose and ash did not vary among the genotypes. The five genotypes are suitable for energy production through combustion.
Resumo:
The aim of this work was to evaluate the efficiency of carboxymethyl cellulose (CMC) and starch blends as carrier materials of rhizobial inoculants regarding their capacity to maintain viable cells and promote cowpea (Vigna unguiculata) nodulation. The experimental design adopted was completely randomized, with three replicates. Forty different compositions of carboxymethyl cellulose (CMC) with starch, compatibilized or not with different proportions of MgO or ZnO, were evaluated regarding their ability of maintaining rhizobial viable cells during the storage period of one month at room temperature, in an initial screening. Thereafter, selected inoculant carrier blends were evaluated regarding their ability to maintain viable rhizobial cells for a period of 165 days, and their performance as inoculant carriers was compared to a peat-based inoculant carrier under greenhouse conditions. Rhizobial cells were better maintained in blends containing 50-60% CMC. Compatibilizing agents did not increase survival of rhizobial cells for 30 days of storage. The cowpea nodulation of polymer blends was statistically the same of peat-based inoculants. CMC/starch polymer blends are efficient carriers to rhizobial inoculants for up to 165 days of storage, when compatibilized with MgO (1%).
Resumo:
Biological nitrogen fixation, catalyzed by nitrogenases, contributes about half of the nitrogen needed to global agriculture. For forty years synthetic chemists and theoreticians have tried to understand and model the structure and function of this important metalloenzyme. Ten years after the first report on the crystal structure of the MoFe protein, scientists still have not been able to synthesize a chemical equivalent of the FeMo cofactor nor the structure knowledge revealed the key to its catalytic activity. This paper with 104 references presents a review of the most relevant advances in chemical nitrogen fixation and their relation with the nitrogenases.
Resumo:
ABSTRACT The increase in the area planted with Crotalaria spectabilishas occurred by several factors, highlighting the potential to reduce the nematodes, nitrogen fixation and the high production of biomass. By becoming a species sown as a crop, it is necessary to control the weeds that coexist with showy crotalaria. This change in the use of this crop creates the possibility of this specie becoming a weed. The aim of this study was to assess the potential use of herbicides applied in preemergence and postemergence of C.spectabilisfor different purposes (control of volunteer and selectivity plants). Three experiments were installed in a greenhouse (two with herbicides applied in preemergence - in soils with distinct textural categories; and one experiment with herbicides applied in postemergence). The results of the experiments with herbicides applied in preemergence showed that: amicarbazone, atrazine, diuron, metribuzin, prometryn, fomesafen and sulfentrazone showed effectiveness for control of C.spectabilis in clayey soil. Besides these, flumioxazin and isoxaflutole also showed potential to be used in the control of showy crotalaria in soils with loam texture. In relation to the postemergence herbicides, atrazine, diuron, prometryn, flumioxazin, fomesafen, lactofen, saflufenacil, amonio-glufosinate and glyphosate can be used aiming the chemical control of C.spectabilis. Herbicides chlorimuron-ethyl, diclosulan, imazethapyr, pyrithiobac-sodium, trifloxysulfuron-sodium, clomazone, pendimethalin, S-metolachlor and trifluralin applied in preemergence, and imazethapyr, pyrithiobac-sodium, flumiclorac, bentazon and clethodim applied in postemergence caused low levels of injury to C.spectabilis plants, making necessary the development of new searches to ensure the selectivity of these products.
Resumo:
Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes) differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.
Resumo:
Azospirillum brasilense is a diazotroph found in association with important agricultural crops. In this organism, the regulation of nitrogen fixation by ammonium ions involves several proteins including the uridylyltransferase/uridylyl-removing enzyme, GlnD, which reversibly uridylylates the two PII proteins, GlnB and GlnZ, in response to the concentration of ammonium ions. In the present study, the uridylylation/deuridylylation cycle of A. brasilense GlnB and GlnZ proteins by GlnD was reconstituted in vitro using the purified proteins. The uridylylation assay was analyzed using non-denaturing polyacrylamide gel electrophoresis and fluorescent protein detection. Our results show that the purified A. brasilense GlnB and GlnZ proteins were uridylylated by the purified A. brasilense GlnD protein in a process dependent on ATP and 2-oxoglutarate. The dependence on ATP for uridylylation was similar for both proteins. On the other hand, at micromolar concentration of 2-oxoglutarate (up to 100 µM), GlnB uridylylation was almost twice that of GlnZ, an effect that was not observed at higher concentrations of 2-oxoglutarate (up to 10 mM). Glutamine inhibited uridylylation and stimulated deuridylylation of both GlnB and GlnZ. However, glutamine seemed to inhibit GlnZ uridylylation more efficiently. Our results suggest that the differences in the uridylylation pattern of GlnB and GlnZ might be important for fine-tuning of the signaling pathway of cellular nitrogen status in A. brasilense.
Resumo:
Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.
Resumo:
Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.
Resumo:
NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.
Resumo:
The inoculation with plant growth-promoting bacteria can be a technological approach useful for increasing the production of maize. The objective of this study was to evaluate the initial performance of maize in response to application of doses of NPK combined with the inoculation of the diazotrophic bacteria Herbaspirillum seropedicae in an greenhouse experiment. The experiment consisted of six fertilizer levels: 0, 25, 50, 75, 100 and 200% of the recommended dose of NPK applied to maize inoculated and non-inoculated with H. seropedicae. At 30 days after the treatment application, the growth characteristics and nutritional status of the plants were evaluated. Plant development was influenced by fertilization, but it was enhanced by combination with the bacteria, which resulted in significant increases in the dry mass of shoots (7%) and leaf area (9%) when compared with non-inoculated plants. The results showed increases in the concentration of N (11%), P (30%) and K (17%) of maize plants in response to bacterial inoculation together with NPK compared with plants that were applied fertilize only. The greater consistency and stability response of the host plant to bacterization in the presence of chemical fertilizer indicate a promissory biotechnological approach for improving the initial growth and adaptation of maize to the cultivation environment.
Resumo:
Fruit tree production is gaining an increasing importance in the central Amazon and elsewhere in the humid tropics, but very little is known about the nutrient dynamics in the soil-plant system. The present study quantified the effects of fertilization and cover cropping with a legume (Pueraria phaseoloides (Roxb.) Benth.) on soil nitrogen (N) dynamics and plant nutrition in a young guarana plantation (Paullinia cupana Kunth. (H.B. and K.) var. sorbilis (Mart.) Ducke) on a highly weathered Xanthic Ferralsol. Large subsoil nitrate (NO3-) accumulation at 0.3-3 m below the guarana plantation indicated N leaching from the topsoil. The NO3- contents to a depth of 2 m were 2.4 times greater between the trees than underneath unfertilized trees (P<0.05). The legume cover crop between the trees increased soil N availability as shown by elevated aerobic N mineralization and lower N immobilization in microbial biomass. The guarana N nutrition and yield did not benefit from the N input by biological fixation of atmospheric N2 by the legume cover (P>0.05). Even without a legume intercrop, large amounts of NO3- were found in the subsoil between unfertilized trees. Subsoil NO3- between the trees could be utilized, however, by fertilized guarana. This can be explained by a more vigorous growth of fertilized trees which had a larger nutrient demand and exploited a larger soil volume. With a legume cover crop, however, more mineral N was available at the topsoil which was leached into the subsoil and consequently accumulated at 0.3-3 m depth. Fertilizer additions of P and K were needed to increase subsoil NO3- use between trees.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.