110 resultados para Backbone-cyclized Proteins Database
Resumo:
Characterization of the insecticidal and hemolytic activity of solubilized crystal proteins of Bacillus thuringiensis (Bt) subsp. medellin (Btmed) was performed and compared to solubilized crystal proteins of isolates 1884 of B. thuringiensis subsp. israelensis (Bti) and isolate PG-14 of B. thuringiensis subsp. morrisoni (Btm). In general, at acid pH values solubilization of the Bt crystalline parasporal inclusions (CPI) was lower than at alkaline pH. The larvicidal activity demonstrated by the CPI of Btmed indicated that optimal solubilization of CPI takes place at a pH value of 11.3, in Bti at pH values from 5.03 to 11.3 and in Btm at pH values from 9.05 to 11.3. Hemolytic activity against sheep red blood cells was mainly found following extraction at pH 11.3 in all Bt strains tested. Polyacrylamide gel electrophoresis under denaturing conditions revealed that optimal solubilization of the CPI in all Bt strains takes place at the alkaline pH values from 9.05 to 11.3. An enriched preparation of Btmed crystals was obtained, solubilized and crystal proteins were separated on a size exclusion column (Sephacryl S-200). Three main protein peaks were observed on the chromatogram. The first peak had two main proteins that migrate between 90 to 100 kDa. These proteins are apparently not common to other Bt strains isolated to date. The second and third peaks obtained from the size exclusion column yielded polypeptides of 68 and 28-30 kDa, respectively. Each peak independently, showed toxicity against 1st instar Culex quinquefasciatus larvae. Interestingly, combinations of the fractions corresponding to the 68 and 30 kDa protein showed an increased toxicity. These results suggest that the 94 kDa protein is an important component of the Btmed toxins with the highest potency to kill mosquito larvae. When crystal proteins of Bti were probed with antisera raised independently against the three main protein fractions of Btmed, the only crystal protein that showed cross reaction was the 28 kDa protein. These data suggest that Btmed could be an alternative bacterium for mosquito control programs in case mosquito larval resistance emerges to Bti toxic proteins.
Resumo:
Data analysis, presentation and distribution is of utmost importance to a genome project. A public domain software, ACeDB, has been chosen as the common basis for parasite genome databases, and a first release of TcruziDB, the Trypanosoma cruzi genome database, is available by ftp from ftp://iris.dbbm.fiocruz.br/pub/genomedb/TcruziDB as well as versions of the software for different operating systems (ftp://iris.dbbm.fiocruz.br/pub/unixsoft/). Moreover, data originated from the project are available from the WWW server at http://www.dbbm.fiocruz.br. It contains biological and parasitological data on CL Brener, its karyotype, all available T. cruzi sequences from Genbank, data on the EST-sequencing project and on available libraries, a T. cruzi codon table and a listing of activities and participating groups in the genome project, as well as meeting reports. T. cruzi discussion lists (tcruzi-l@iris.dbbm.fiocruz.br and tcgenics@iris.dbbm.fiocruz.br) are being maintained for communication and to promote collaboration in the genome project
Resumo:
The pathogenic O1 Amazonia variant of Vibrio cholerae has been shown previously to have a cytotoxin acting on cultured Vero and Y-1 cells, and to lack important virulence factors such as the cholera toxin (Coelho et al. 1995a). This study extends the molecular analysis of the Amazonia strains, detecting the presence of the toxR gene, with a very similar sequence to that of the El Tor and classical biotypes. The outer membrane proteins are analyzed, detecting a variation among the group of Amazonia strains, with three different patterns found. As a by-product of this work a polymerase chain reaction fragment was sequenced, reading part of the sequence of the Lon protease of the Amazonia strains. This gene was not previously described in V. cholerae, but its sequence is present in the TIGR database specific for this species.
Resumo:
The invasion of the erythrocyte by Plasmodium falciparum depends on the ability of the merozoite to move through the membrane invagination. This ability is probably mediated by actin dependent motors. Using affinity columns with G-actin and F-actin we isolated actin binding proteins from the parasite. By immunoblotting and immunoprecipitation with specific antibodies we identified the presence of tropomyosin, myosin, a-actinin, and two different actins in the eluate corresponding to F-actin binding proteins. In addition to these, a 240-260 kDa doublet, different in size from the erythrocyte spectrin, reacted with an antibody against human spectrin. All the above mentioned proteins were metabolically radiolabeled when the parasite was cultured with 35S-methionine. The presence of these proteins in P. falciparum is indicative of a complex cytoskeleton and supports the proposed role for an actin-myosin motor during invasion.
Resumo:
The PyAG1 gene, identified by the screening of a Plasmodium yoelii genomic DNA library with a rhoptry-specific Mab, encodes a protein with a zinc finger structure immediately followed by the consensus sequence of the Arf GAP catalytic site. The serum of mice immunized with the recombinant protein recognized specifically the rhoptries of the late infected erythrocytic stages. Blast analysis using the Genbank database gave the highest scores with four proteins presenting an Arf1 GAP activity. If presenting also this activity, the PyAG1 protein could be involved in the regulation of the secreted protein vesicular transport and, consequently, in the rhoptry biogenesis.
Resumo:
This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.
Resumo:
Another additional peculiarity in Leishmania will be discussed about of the amino acid divergence rate of three structural proteins: acidic ribosomal P1 and P2b proteins, and histone H3 by using multiple sequence alignment and dendrograms. These structural proteins present a high rate of divergence regarding to their homologous protein in Trypanosoma cruzi. At this regard, L. (V.) peruviana P1 and T. cruzi P1 showed 57.4% of divergence rate. Likewise, L. (V.) braziliensis histone H3 and acidic ribosomal P2 protein exhibited 31.8% and 41.7% respectively of rate of divergence in comparison with their homologous in T. cruzi.
Resumo:
The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.
Resumo:
The protein profiles of the New Guinea "C" dengue virus type 2 (DENV-2)prototype and those of a Brazilian DENV-2 isolated in the State of Rio de Janeiro in 1995 were compared. SDS-PAGE analysis showed that the virus from Rio de Janeiro expresses NS5 (93.0 kDa), NS3 (66.8 kDa) E (62.4 kDa) and NS1 (41.2 kDa) proteins differently from the New Guinea "C" virus. The immunoblot revealed specificity and antigenicity for the NS3 protein from DENV-2 Rio de Janeiro mainly in primary infections, convalescent cases, and in secondary infections in both cases and only antigenicity for E and NS1 proteins for both viruses in primary and secondary infections.
Resumo:
The number of sequences generated by genome projects has increased exponentially, but gene characterization has not followed at the same rate. Sequencing and analysis of full-length cDNAs is an important step in gene characterization that has been used nowadays by several research groups. In this work, we have selected Schistosoma mansoni clones for full-length sequencing, using an algorithm that investigates the presence of the initial methionine in the parasite sequence based on the positions of alignment start between two sequences. BLAST searches to produce such alignments have been performed using parasite expressed sequence tags produced by Minas Gerais Genome Network against sequences from the database Eukaryotic Cluster of Orthologous Groups (KOG). This procedure has allowed the selection of clones representing 398 proteins which have not been deposited as S. mansoni complete CDS in any public database. Dedicated sequencing of 96 of such clones with reads from both 5' and 3' ends has been performed. These reads have been assembled using PHRAP, resulting in the production of 33 full-length sequences that represent novel S. mansoni proteins. These results shall contribute to construct a more complete view of the biology of this important parasite.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further.
Resumo:
The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.