46 resultados para Aqueous Atrp
Resumo:
The potential of three aquatic macrophytes, Azoll caroliniana, Salvinia minima and Lemna gibba, was evaluated in this work aimed at selection of plants to be used in remediation of environments contaminated by arsenic (As). The experiments were carried out in a greenhouse during six days in pots containing Hoagland solution (¼ ionic strength) at As concentrations of 0.5; 2.5 and 5.0 mg L-1. The three species showed greater As accumulation as the concentration of the metalloid in solution increased. However, a reduction was detected in fresh and dry mass gain when the plants were exposed to high As concentrations. The macrophytes showed differences in efficiency of removal of As in solution. A. caroliniana, S. minima and L. gibba accumulated, on average, 0.130; 0.200; and 1.397 mg mDM-1, respectively, when exposed to 5.0 mg L-1 of As. The macrophytes absorbed a greater quantity of As in solution with low phosphate content. The greater As concentration in L. gibba tissues lowered the chlorophyll and carotenoid contents as shown by the high chlorosis incidence. Lemna gibba also exhibited a decrease in leaf size, with the total chlorophyll and carotenoid synthesis not being affected by As in A. caroliniana. This species exhibited purplish leaves with high concentration of anthocyanin, whose presence suggested association to phosphate deficiency. Marginal necrosis occurred on S. minima floating leaves, with the released daughter-plants not showing any visual symptoms during the treatment. The percentage of As removed from the solution decreased when the plants were exposed to high concentrations of the pollutant. Among the three species studied, only L. gibba could be considered an As hyper-accumulator. The use of this plant species for remediation of aquatic environments was shown to be limited and requires further investigation.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.
Resumo:
Conyza canadensis is a widespread weed species forming dense populations in most regions of China. Petri dish bioassays with aqueous extracts of the aboveground parts and roots of C. canadensis at three concentrations (0.05, 0.1, and 0.2 g mL-1) were undertaken to investigate the autotoxic effects of C. canadensis, and the possible effects on three dominant native weed species, Plantago asiatica, Digitaria sanguinalis and Youngia japonica. The results showed that seed germination and the shoot length of three native species were significantly inhibited by aqueous extracts of C. canadensis at almost all concentrations that generally increased with increasing extract concentration. However, the seed germination and shoot length of C. canadensis itself was not significantly affected by the same extracts at all concentrations. These results suggested that the potential allelopathic compounds produced by the tissue of C. canadensis may contribute to its invasive success in invading southern China.
Exploring Herbicidal Potential of Aqueous Extracts of Some Herbaceous Plants Against Parthenium Weed
Resumo:
To assess the phytotoxic potential of Achyranthes aspera, Alternanthera philoxeroides, Datura metel and Rumex dentatus against Parthenium hysterophorus, 5% (w/v on dry weight basis) aqueous extracts from root, stem, leaf, flower and whole plant were tested through a Petri plate-based germination and pot-cultured seedling bioassays. Achyranthes aspera and A. philoxeroides inhibited parthenium weed germination more than extracts from other species. Whole plant, leaf and fruit extracts of A. aspera reduced the germination percentage (5%); leaf extract from A. philoxeroides caused lower germination index (0.4), higher mean germination time (14 d) and longer time to 50% germination (13.5 d) of parthenium weed. In the foliar spray bioassay, A. aspera reduced parthenium weed shoot growth more than the other species whereas R. dentatus caused more reduction in root growth. Whole plant extract from A. aspera caused maximum reduction in parthenium weed seedling vigor index (98%) and seedling biomass (96%). The aqueous extracts of A. aspera and A. philoxeroides contained higher concentrations of phenolics viz. gallic (16.9 mg L-1), caffeic (7.4 mg L-1), chromatotropic (63.8 mg L-1), p-coumaric (10.5 mg L-1), m-coumaric (3.1 mg L-1), syringic (9.21 mg L-1) and 4 hydroxy-3-methoxy benzoic (118.6 mg L-1) acids compared with extracts of the other two species tested.
Resumo:
Sapindus saponaria (soapberry) is a species that presents a great diversity of chemical compounds, such as saponins; however, few studies have examined the allelopathic effect of this species. Therefore, this study provides an evaluation of the allelopathic potential of aqueous extracts of the roots and mature leaves of S. saponaria on the germination of diaspores and seedlings growth of lettuce (Lactuca sativa) and onion (Allium cepa). The aqueous extract was prepared in the proportion of 100 g of dry plant material in 1,000 mL of distilled water (a concentration of 10% w v-1), and diluted with distilled water to 7.5, 5.0 and 2.5% concentrations. The mature leaf extracts caused delay and decrease in the germination process of the lettuce and onion diaspores, with inhibitory effect concentration-dependent, while the root extracts showed no allelopathic effects on the germination process. Both extracts caused abnormalities and inhibited the growth of shoot and root seedlings.
Resumo:
Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late complications in diabetes. The present study was undertaken to investigate the influence of oral administration of aqueous pod extract (200 mg/kg body weight) of Phaseolus vulgaris, an indigenous plant used in Ayurvedic Medicine in India, on collagen content and characteristics in the tail tendon of streptozotocin-diabetic rats. In diabetic rats, collagen content (117.01 ± 6.84 mg/100 mg tissue) as well as its degree of cross-linking was increased, as shown by increased extent of glycation (21.70 ± 0.90 µg glucose/mg collagen), collagen-linked fluorescence (52.8 ± 3.0 AU/µmol hydroxyproline), shrinkage temperature (71.50 ± 2.50ºC) and decreased acid (1.878 ± 0.062 mg hydroxyproline/100 mg tissue) and pepsin solubility (1.77 ± 0.080 mg hydroxyproline/100 mg tissue). The alpha/ß ratio of acid- (1.69) and pepsin-soluble (2.00) collagen was significantly decreased in streptozotocin-diabetic rats. Administration of P. vulgaris for 45 days to streptozotocin-diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effect of P. vulgaris was compared with that of glibenclamide, a reference drug administered to streptozotocin-diabetic rats at the dose of 600 µg/kg body weight for 45 days by gavage. The effects of P. vulgaris (collagen content, 64.18 ± 1.97; extent of glycation, 12.00 ± 0.53; collagen-linked fluorescence, 33.6 ± 1.9; shrinkage temperature, 57.0 ± 1.0; extent of cross-linking - acid-soluble collagen, 2.572 ± 0.080, and pepsin-soluble collagen, 2.28 ± 0.112) were comparable with those of glibenclamide (collagen content, 71.5 ± 2.04; extent of glycation, 13.00 ± 0.60; collagen-linked fluorescence, 38.9 ± 2.0; shrinkage temperature, 59.0 ± 1.5; extent of cross-linking - acid-soluble collagen, 2.463 ± 0.078, and pepsin-soluble collagen, 2.17 ± 0.104). In conclusion, administration of P. vulgaris pods had a positive influence on the content of collagen and its properties in streptozotocin-diabetic rats.
Resumo:
Plants from the genus Alternanthera are thought to possess antimicrobial and antiviral properties. In Brazilian folk medicine, the aqueous extract of A. tenella Colla is used for its anti-inflammatory activity. The present study investigated the immunomodulatory property of A. tenella extract by evaluating the antibody production in male albino Swiss mice weighing 20-25 g (10 per group). The animals received standard laboratory diet and water ad libitum. The effect of A. tenella extract (5 and 50 mg/kg, ip) was evaluated in mice immunized with sheep red blood cells (SRBC 10%, ip) as T-dependent antigen, or in mice stimulated with mitogens (10 µg, Escherichia coli lipopolysaccharide, LPS, ip). The same doses (5 and 50 mg/kg, ip) of A. tenella extract were also tested for antitumor activity, using the Ehrlich ascites carcinoma as model. The results showed that 50 mg/kg A. tenella extract ip significantly enhanced IgM (64%) and IgG2a (50%) antibody production in mice treated with LPS mitogen. The same dose had no effect on IgM-specific response, whereas the 5 mg/kg treatment caused a statiscally significant reduction of anti-SRBC IgM-specific antibodies (82%). The aqueous extract of A. tenella (50 mg/kg) increased the life span (from 16 ± 1 to 25 ± 1 days) and decreased the number of viable tumor cells (59%) in mice with Ehrlich ascites carcinoma. The present findings are significant for the development of alternative, inexpensive and perhaps even safer strategies for cancer treatment.
Resumo:
We determined the antioxidant status of the aqueous humor after extracapsular lens extraction in 14 mongrel dogs weighing about 10 kg. The animals were examined by slit lamp biomicroscopy, applanation tonometry and indirect ophthalmoscopy. One eye was submitted to conventional extracapsular lens extraction and the other was used as control. Samples of aqueous humor were obtained by anterior chamber paracentesis before and at days 1, 2, 3, 7 and 15 after surgery. Total antioxidant status was determined as the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis(2-amidopropane) chlorine. Ascorbic acid concentration was measured by HPLC with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by ANOVA followed by the Tukey-Kramer test. Protein concentration increased from 0.61 to 22 mg/ml 24 h after surgery. These levels were maintained and returned to normal at day 7. Total antioxidant capacity was reduced from 50 to about 30 min until day 3 and at day 7 it was equal to control. Ascorbic acid levels were reduced from 252 to about 110 µM and then returned to control values at day 15. Considering the importance of ascorbic acid concentration in aqueous humor for the maintenance of the antioxidant status of the anterior segment of the eye, the decrease of antioxidant defenses suggests that the surgical procedures promote an oxidative stress condition in the eye.
Resumo:
Cissampelos sympodialis Eichl species are used in folk medicine for the treatment of asthma, arthritis and rheumatism. In the present study, we investigated the immunomodulatory effect of an aqueous fraction of a 70% (v/v) ethanol extract of C. sympodialis leaves on B lymphocyte function. The hydroalcoholic extract inhibited the in vitro proliferative response of resting B cells induced by LPS (IC50 = 17.2 µg/ml), anti-delta-dextran (IC50 = 13.9 µg/ml) and anti-IgM (IC50 = 24.3 µg/ml) but did not affect the anti-MHC class II antibody-stimulated proliferative response of B cell blasts obtained by stimulation with IL-4 and anti-IgM. Incubation with the hydroalcoholic extract used at 50 µg/ml induced a 700% increase in intracellular cAMP levels. IgM secretion by resting B cells (obtained from normal mice) and polyclonally activated B cells (obtained from Trypanosoma cruzi-infected animals) was inhibited by the hydroalcoholic extract. The latter were more sensitive to the hydroalcoholic extract since 6.5 µg/ml induced a 20% inhibition in the response of cells from normal mice while it inhibited the response of B cells from infected animals by 75%. The present data indicate that the alcoholic extract of C. sympodialis inhibited B cell function through an increase in intracellular cAMP levels. The finding that the hydroalcoholic extract inhibited immunoglobulin secretion suggests a therapeutic use for the extract from C. sympodialis in conditions associated with unregulated B cell function and enhanced immunoglobulin secretion. Finally, the inhibitory effect of the hydroalcoholic extract on B cells may indicate an anti-inflammatory effect of this extract.
Resumo:
The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 µg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.
Resumo:
The aim of the present paper was to provide the evidences for the antioxidant activity in Halimeda incrassata (Ellis) Lamouroux aqueous extracts obtained after simple water extraction of the fresh algae at room temperature (23°C). Previously in the literature, only antioxidant activity associated to carotenoids fractions of seaweeds has been reported. From different species of seaweeds, Halimeda incrassata aqueous extract exhibited the highest antioxidant activity on the inhibition of TBARS formed during the spontaneous lipid peroxidation of rat brain homogenates with an IC50 of 0.340mg.mL-1. Halimeda incrassata aqueous extract (0.5mg.mL-1), was also capable of decreasing the in vitro generation of hydrogen peroxide by two distinct metabolic pathways involving glutamic and malonic acids. Also, Halimeda incrassata (at doses of 50, 100 and 200mg.Kg-1) showed a neuroprotective effect in vivo on the gerbil model of bilateral carotid occlusion because of decreasing the locomotor and exploratory activity induced by ischemia. In summary, Halimeda incrassata aqueous extracts exhibit antioxidant properties in different in vitro as well as in vivo models which could be explained by the presence of several hydrosoluble compounds. Further studies on this way are necessary to elucidate the precise structure of these compounds. Low toxicity of most seaweeds to humans, but particularly of Halimeda genus may favor its use as functional food.
Resumo:
This work investigated the fructooligosaccharides (FOS) synthesis by immobilized inulinase obtained from Kluyveromyces marxianus NRRL Y-7571 in aqueous and aqueous-organic systems using sucrose as substrate. The sequential strategy of experimental design was used to optimize the FOS conversion in both systems. For the aqueous-organic system, a 2(6-2) fractional design was carried out to evaluate the effects of temperature, sucrose concentration, pH, aqueous/organic ratio, enzyme activity, and polyethylene glycol concentration. For the aqueous system, a central composite design for the enzyme activity and the sucrose concentration was carried out. The highest fructooligosaccharides yield (Y FOS) for the aqueous-organic system was 18.2 ± S0.9 wt%, at 40 ºC, pH 5.0, sucrose concentration of 60% (w/w), enzyme activity of 4 U.mL-1, and aqueous/organic ratio of 25/75 wt%. The highest Y FOS for the aqueous system was 14.6 ± 0.9 wt% at 40 ºC, pH 5.0, sucrose concentration of 60 wt%, and enzyme activity of 4.0 U.mL-1.
Resumo:
Propolis is a resinous substance collected by honeybees to seal honeycomb, which has been used in folk medicine due to its antimicrobial and antioxidant properties. In the present study, water and methanol were used to extract phenols and flavonoids from propolis collected in thirteen different areas in the Algarve region during the winter and spring. The ABTS•+, DPPH•, and O2•- scavenging capacity, and metal chelating activity were also evaluated in the propolis samples. Methanol was more effective than water in extracting total phenols (2.93-8.76 mg/mL) (0.93-2.81 mg/mL). Flavones and flavonols were also better extracted with methanol (1.28-2.76 mg/mL) than with water (0.031-0.019 mg/mL). The free radical scavenging activity, ABTS (IC50=0.006-0.036 mg/mL), DPPH (IC50=0.007-0.069 mg/mL) and superoxide (IC50=0.001-0.053 mg/mL), of the samples was also higher in methanolic extracts. The capacity for chelating metal ions was higher in aqueous extracts (41.11-82.35%) than in the methanolic ones (4.33-29.68%). Propolis from three locations of Algarve region were richer in phenols and had better capacity for scavenging free ABTS and DPPH radicals than the remaining samples. These places are part of a specific zone of Algarve known as Barrocal.
Resumo:
Abstract Pecan nutshell is a residue from food industry that has potential to be used as biopreservative in foods. The objective of this study was to evaluate the antimicrobial activity of pecan nutshell aqueous extract in vitro and its effectiveness to inhibit spoilage microorganisms on lettuce leaves. The results indicate that the aqueous extract presents inhibitory activity against important foodborne pathogenic bacteria such as Listeria monocytogenes, Salmonella Enteritidis, Staphylococcus aureus, Bacillus cereus, Aeromonas hydrophila and Pseudomonas aeruginosa. Antimicrobial activity was not observed against Corynebacterium fimi, Clostridium perfringens, Escherichia coli, and the phytopathogenic fungi tested. When applied onto lettuce leaves, pecan nutshell extract reduced the counts of mesophilic and psychrotrophic bacteria in 2 and 4 log CFU/g, respectively, during storage of leafy for 5 days at refrigeration temperature (5 °C). The extract was not effective to inhibit yeast on lettuce leaves. Thus, the aqueous extract of pecan shell showed great potential to be used as a natural preservative in foods, acting mainly in the inhibition of spoilage and pathogenic bacteria.
Resumo:
This study evaluated the effects on the development and predatory capacity of Podisus nigrispinus fed on Spodoptera frugiperda that have ingested different concentrations of neem oil. The predatory capacity of Podisus nigrispinus was assessed, separating nymphs (fourth instar) and adults (males and females). The treatments consisted of S. frugiperda larvae reared in neem oil aqueous solutions (0.077, 0.359 and 0.599%), deltamethrin EC 25 (0.100%) and control arranged in a completely randomized design, with ten replicates. Insects were offered three larval densities (one, three and six), in the third or fourth instars. The predated larvae were examined at 24 and 48 hours after the beginning of the experiment. Biological parameters of Podisus nigrispinus were evaluated in groups of ten second-instar nymphs transferred to pots, in five replicates. Insects were offered 2-6 third and/or fourth-instar larvae reared in the same neem oil concentrations in a completely randomized design. The following parameters were evaluated: duration of each nymph stage (days), nymph mortality (%), weight of fifth-instar nymphs (mg), sex ratio, weight of males and females (mg) and longevity of unfed adults (days). The predatory capacity of nymphs and adults of Podisus nigrispinus was influenced by the neem oil at the concentrations of 0.359% and 0.599% in the highest density. The concentration of 0.359% lengthened the nymphal stage and the concentration of 0.599% reduced the weight of males.