43 resultados para Analytical chemistry|Biochemistry
Resumo:
This article describes an experiment designed to teach quantitative determination in gas chromatography (GC) in Organic and Analytical Chemistry practical classes. The experiment consisted of extracting and analyzing eugenol from clove seeds to perform a quantitative approach aimed at comparing results obtained by external and internal calibration procedures. Therefore, this experiment proved to be very effective tool to enhance students awareness on the need to understand different types of calibration in GC and on how to avoid common experimental errors, and to find the best ways to eliminate their interference during the quantitative analysis phase.
Resumo:
The development of modern analytical tools plays an important role in quality control. The main purpose of this study was to explore the use of subcritical water as a versatile analytical tool, employed simultaneously as a reagent and solvent, as well as the application of high temperature-high resolution gas chromatography (HT-HRGC) to develop a procedure for the analysis of triacylglycerides and fatty acids in Azadirachta indica A. Juss. (Neem) oil without the need for solvents, chemical reagents, or catalytic agents. The developed method presented satisfactory results and is in agreement with the concepts of Green Analytical Chemistry (GAC).
Resumo:
The year of 2010 marks the 20th anniversary of the development of Sequential Injection Analysis (SIA) by Ruzicka and Marshall. Considered the second generation of the flow injection methods, this article briefly describes the history, the basic principles of the technique and reviews all papers developed by Brazilian scientists aiming the divulgation of this automation technique in Analytical Chemistry.
Resumo:
This text describes an experiment on fractional precipitation of a polymer together with determination of average degree of polymerization by NMR. Commercial sodium polyphosphate was fractionated by precipitation from aqueous solution by adding increasing amounts of acetone. The polydisperse salt and nine fractions obtained from it were analyzed by 31P Nuclear Magnetic Resonance and the degree of polymerization of the salts and of the fractions were calculated. Long-chain sodium polyphosphate was also synthesized and analyzed. This experiment was tested in a PChem lab course but it can be used also to illustrate topics of inorganic polymers and analytical chemistry.
Resumo:
Lead and copper concentrations in drinking water increase considerably on going from municipality reservoirs to the households sampled in Ribeirão Preto (SP-Brazil). Flushing of only 3 liters of water reduced metal concentrations by more than 50%. Relatively small changes in water pH rapidly affected corrosion processes in lead pipes, while water hardness appeared to have a long-term effect. This approach aims to encourage University teachers to use its content as a case study in disciplines of Instrumental Analytical Chemistry and consequently increase knowledge about drinking water contamination in locations where no public monitoring of trace metals is in place.
Resumo:
Analytical Chemistry books lack a clear link between thermodynamic and equilibrium approaches involving acids and bases. In this work, theoretical calculations were performed to search for these relations. An excellent relationship was found between difference in Gibbs free energy, ∆G of acid dissociation reaction and ∆G of hydrolysis reaction of the corresponding conjugate base. A relationship between ∆G of hydrolysis reaction of conjugate acids and their corresponding atomic radius was also identified, showing that stability plays an important role in hydrolysis reactions. Finally, the importance of solvation in acid/base behavior was demonstrated when comparing the corresponding theoretical and experimental ∆G´s.
Resumo:
The conventional curriculum of Analytical Chemistry undergraduate courses emphasizes the introduction of techniques, methods and procedures used for instrumental analysis. All these concepts must be integrated into a sound conceptual framework to allow students to make appropriate decisions. Method calibration is one of the most critical parameters that has to be grasped since most analytical techniques depend on it for quantitative analysis. The conceptual understanding of calibration is not trivial for undergraduate students. External calibration is widely discussed during instrumental analysis courses. However, the understanding of the limitations of external calibration to correct some systematic errors is not directly derived from laboratory examples. The conceptual understanding of other calibration methods (standard addition, matrix matching, and internal standard) is imperative. The aim of this work is to present a simple experiment using grains (beans, corn and chickpeas) to explore different types of calibration methods.
Resumo:
The filling of capillaries via the sol-gel process is growing. Therefore, this technical note focuses on disseminating knowledge acquired in the Group of Analytical Chemistry and Chemometrics over seven years working with monolithic stationary phase preparation in fused silica capillaries. We believe that the detailed information presented in this technical note concerning the construction of an alternative high pressurization device, used to fill capillary columns via the sol-gel process, which has promising potential for applications involving capillary electrochromatography and liquid chromatography in nano scale, may be enlightening and motivating for groups interested in developing research activities within this theme.
Resumo:
Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma optical emission spectrometry (ICP OES) are widely used in academic institutions and laboratories for quality control to analyze inorganic elements in samples. However, these techniques have been observed to underperform in sample nebulization processes. Most of the samples processed through nebulization system are discarded, producing large volumes of waste. This study reports the treatment and reuse of the waste produced from ICP OES technique in a laboratory of analytical research at the Universidade Federal do Ceará, Brazil. The treatment of the waste was performed by the precipitation of elements using (NH4)2CO3. Subsequently, the supernatant solution can be discarded in accordance with CONAMA 430/2011. The precipitate produced from the treatment of residues can be reused as a potential sample in undergraduate qualitative analytical chemistry lab classes, providing students the opportunity to test a real sample.
Resumo:
Since their original discovery in 1914, ionic liquids (IL) have been widely examined and explored in chemistry due to their unique physical and chemical properties. Ionic liquids are collectively known as organic salts and have melting points of 100 °C or under. The molten salts most employed in analytical chemistry, including gas chromatography (GC), consist of an organic cation paired with an organic or inorganic anion. This class of materials exhibits negligible vapor pressure and may have their properties (e.g.thermal stability and selectivity) structurally tuned by imparting different moieties to the cation/anion. Currently, there are an estimated 1018possible combinations of IL. In this context, the prospection of highly selective IL-based stationary phases for gas-liquid chromatography has enabled high peak capacity and efficient separations of many critical pairs in complex samples. In this review, we present and discuss fundamental characteristics of ionic liquids and introduce important solvation models for gas-liquid systems. In addition, recent advances and applications of IL in conventional and multidimensional gas chromatography are outlined.
Resumo:
The use of spreadsheet softwares is not widespread in Chemical Education in Brazil as a computational education tool. By its turn the Qualitative Analytical Chemistry is considered a discipline with classical and non-flexible content. Thus in this work the spreadsheet software Excel® was evaluated as a teaching tool in a Qualitative Analytical Chemistry course for calculations of concentrations of the species in equilibrium in solutions of acids. After presenting the theory involved in such calculations the students were invited to elaborate the representation of the distribution of these species in a graphical form, using the spreadsheet software. Then the teaching team evaluated the resulting graphics regarding form and contents. The graphics with conceptual and/or formal errors were returned for correction, revealing significant improvement in the second presentation in all cases. The software showed to be motivating for the content of the discipline, improving the learning interest, while it was possible to prove that even in classical disciplines it is possible to introduce new technologies to help the teaching process.
Resumo:
The profile analysis of CNPq Research Productivity Fellows (PQ) in the four subfields of chemistry and in their respective specialties highlighted particularities with regard to the indicators related to the judging criteria established by the Chemistry Advisory Committee. The curricula of all 727 PQ fellows with active grants in 15/03/2013 were analyzed spanning the past10 years (2003-2013). Out of all PQ-1 fellows, researchers in the subfield of Organic Chemistry had the highest median number of articles published per year. The subfield of Analytical Chemistry qualifies a higher number of postgraduate level students in comparison to other Chemistry subfields. Furthermore, this subfield had the highest average Hirsch index among PQ-1A and PQ-1B fellows. On the other hand, Inorganic Chemistry had the highest average number of patent applications per researcher, while Physical Chemistry had the specialties with the highest citation rates per paper and the highest average impact factors per journal. In all subfields, women made up a low proportion, especially at the highest levels of PQ fellowships. Although quantitative differences in scientific output were observed among the subfields, qualitative evaluation of science output was not carried out.
Resumo:
At the present time, protein folding is an extremely active field of research including aspects of biology, chemistry, biochemistry, computer science and physics. The fundamental principles have practical applications in the exploitation of the advances in genome research, in the understanding of different pathologies and in the design of novel proteins with special functions. Although the detailed mechanisms of folding are not completely known, significant advances have been made in the understanding of this complex process through both experimental and theoretical approaches. In this review, the evolution of concepts from Anfinsen's postulate to the "new view" emphasizing the concept of the energy landscape of folding is presented. The main rules of protein folding have been established from in vitro experiments. It has been long accepted that the in vitro refolding process is a good model for understanding the mechanisms by which a nascent polypeptide chain reaches its native conformation in the cellular environment. Indeed, many denatured proteins, even those whose disulfide bridges have been disrupted, are able to refold spontaneously. Although this assumption was challenged by the discovery of molecular chaperones, from the amount of both structural and functional information now available, it has been clearly established that the main rules of protein folding deduced from in vitro experiments are also valid in the cellular environment. This modern view of protein folding permits a better understanding of the aggregation processes that play a role in several pathologies, including those induced by prions and Alzheimer's disease. Drug design and de novo protein design with the aim of creating proteins with novel functions by application of protein folding rules are making significant progress and offer perspectives for practical applications in the development of pharmaceuticals and medical diagnostics.