163 resultados para Aluminum compounds
Resumo:
A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
Aluminum (Al) toxicity is one of the most limiting factors for productivity. This research was carried out to assess the influence of Al nutrient solution on plant height, dry weight and morphoanatomical alterations in corn (Zea mays L.) roots and leaves. The experiment was conducted in a greenhouse with five treatments consisting of Al doses (0, 25, 75, 150, and 300 µmol L-1) and six replications. The solutions were constantly aerated, and the pH was initially adjusted to 4.3. The shoot dry matter, root dry matter and plant height decreased significantly with increasing Al concentrations. Compared to the control plants, it was observed that the root growth of corn plants in Al solutions was inhibited, there were fewer lateral roots and the development of the root system reduced. The leaf anatomy of plants grown in solutions containing 75 and 300 µmol L-1 Al differed in few aspects from the control plants. The leaf sheaths of the plants exposed to Al had a uniseriate epidermis coated with a thin cuticle layer, and the cells of both the epidermis and the cortex were less developed. In the vascular bundle, the metaxylem and protoxylem had no secondary walls, and the diameter of both was much smaller than of the control plants.
Resumo:
Compatibility between Eucalyptus dunnii and the ectomycorrhizal fungi Hysterangium gardneri and Pisolithus sp. - from Eucalyptus spp. -, Rhizopogon nigrescens and Suillus cothurnatus - from Pinus spp.-, was studied in vitro. Pisolithus sp., H. gardneri and S. cothurnatus colonized the roots. Pisolithus sp. mycorrhizas presented mantle and Hartig net, while H. gardneri and S. cothurnatus mycorrhizas presented only mantle. S. cothurnatus increased phenolics level on roots. Pisolithus sp. and R. nigrescens decreased the level of these substances. The isolates from Eucalyptus seem to be more compatible towards E. dunnii than those from Pinus. The mechanisms involved could be related, at least in the cases of Pisolithus and Suillus, to the concentration of phenolics in roots.
Resumo:
Seed from the sensitive wheat (Triticum aestivumL.) cultivar Anahuac was treated to gamma-ray irradiation and eleven Al3+ tolerant mutants selected. The objective was to compare these mutants to the original Anahuac and to the tolerant wheat cultivars IAC-24 and IAC-60 from 1994 to 1996 in acid (Capão Bonito) and limed (Monte Alegre do Sul) soil field trials, in the State of São Paulo, Brazil. Grain yield and agronomic characteristics were analyzed. All the mutant lines yielded higher than the sensitive Anahuac cultivar in the acid soils of Capão Bonito. Under limed soil conditions, 10 mutants had a similar yield to the original sensitive cultivar and one a lower yield. The majority of the mutants were similar in yield to the tolerant cultivars IAC-24 and IAC-60 under both conditions. Some of the mutants showed altered agronomic characteristics, but these alterations did not generally influence the grain yield. The results indicated that tolerant lines with good characteristics may be obtained from a susceptible cultivar by mutation induction, thus allowing cropping under conditions where Al3 + is a limiting factor.
Resumo:
Aluminum (Al) toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.
Resumo:
The objective of this study was to determine the effects of rainfall, temperature, sunlight and relative humidity, as well as predators and parasitoids, leaf chemical composition and levels of leaf nitrogen and potassium on the intensity of Scirtothrips manihoti (Thysanoptera: Thripidae) attack on cassava Manihot esculenta Crantz var. Cacau. The leaf compounds (E)-farnesene/trans-farnesol and D-friedoolean-14-en-3-one correlated significantly with the population of S. manihoti. Insect population decreased in the dry and cold season probably due to leaf senescence. Significative correlation was observed between Syrphidae with S. manihoti populations.
Resumo:
The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD50 from 2.72 to 39.71 mg g-1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis.
Resumo:
The objective of this work was to assess stimulated latex flow from rubber trees (Hevea brasiliensis) with saturated macrolide (latrunculin A), 1, 5, and 10% potassium iodide in 2% methylcellulose compared with 0.3% ethylene in 2% methylcellulose (check) and 2% methylcellulose (blank). Latex output and contents of pure rubber, total solid, sucrose, inorganic phosphorus, thiol, and Mg2+ were measured. The treatments containing 1% KI or saturated macrolide increased latex yields compared to the blank with 2% methylcellulose alone. The 1% KI or saturated macrolide treatments were equal to that of 0.3% ethylene check treatment. However, 5 and 10% KI were harmful to bark of rubber trees, even caused prolonged tapping panel dryness.
Resumo:
The objective of this work was to evaluate the effect of organic compounds from plant extracts of six species and phosphate fertilization on soil phosphorus availability. Pots of 30 cm height and 5 cm diameter were filled with Typic Hapludox. Each pot constituted a plot of a completely randomized design, in a 7x2 factorial arrangement, with four replicates. Aqueous extracts of black oat (Avena strigosa), radish (Raphanus sativus), corn (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), sorghum (Sorghum bicolor), and water, as control, were added in each plot, with or without soluble phosphate fertilization. After seven days of incubation, soil samples were taken from soil layers at various depths, and labile, moderately labile and nonlabile P fractions in the soil were analysed. Plant extracts led to an accumulation of inorganic phosphorus in labile and moderately labile fractions, mainly in the soil surface layer (0-5 cm). Radish, with a higher amount of malic acid and higher P content than other species, was the most efficient in increasing soil P availability.
Resumo:
The objective of this work was to determine the contents of methylxanthines, caffeine and theobromine, and phenolic compounds, chlorogenic and caffeic acids, in 51 mate progenies (half-sib families) and estimate the heritability of genetic parameters. Mate progenies were from five Brazilian municipalities: Pinhão, Ivaí, Barão de Cotegipe, Quedas do Iguaçu, and Cascavel. The progenies were grown in the Ivaí locality. The contents of the compounds were obtained by high performance liquid chromatography (HPLC). The estimation of genetic parameters by the restricted maximum likelihood (REML) and the prediction of genotypic values via best linear unbiased prediction (BLUP) were obtained by the Selegen - REML/BLUP software. Caffeine (0.248-1.663%) and theobromine (0.106-0.807%) contents were significantly different (p<0.05) depending on the region of origin, with high individual heritability (ĥ²>0.5). The two different progeny groups determined for chlorogenic (1.365-2.281%) and caffeic (0.027-0.037%) acid contents were not significantly different (p<0.05) depending on the locality of origin. Individual heritability values were low to medium for chlorogenic (ĥ²<0.4) and caffeic acid (ĥ²<0.3). The content of the compounds and the values of genetic parameters could support breeding programs for mate.
Resumo:
The objective of this work was to evaluate the potential of an artificial mixture of volatile organic compounds (VOCs), produced by Saccharomyces cerevisiae, to control Sclerotinia sclerotiorum in vitro and in bean seeds. The phytopathogenic fungus was exposed, in polystyrene plates, to an artificial atmosphere containing a mixture of six VOCs formed by alcohols (ethanol, 3-methyl-1-butanol, 2-methyl-1-butanol and phenylethyl alcohol) and esters (ethyl acetate and ethyl octanoate), in the proportions found in the atmosphere naturally produced by yeast. Bean seeds artificially contamined with the pathogen were fumigated with the mixture of VOCs in sealed glass flasks for four and seven days. In the in vitro assays, the compounds 2-methyl-1-butanol and 3-methyl-1-butanol were the most active against S. sclerotiorum, completely inhibiting its mycelial growth at 0.8 µL mL-1, followed by the ethyl acetate, at 1.2 µL mL-1. Bean seeds fumigated with the VOCs at 3.5 µL mL-1 showed a 75% reduction in S. sclerotiorum incidence after four days of fumigation. The VOCs produced by S. cerevisiae have potential to control the pathogen in stored seeds.
Resumo:
The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE) using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids) of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.
Resumo:
The objective of this work was to evaluate the influence of the breed and of the addition of bioactive substances to forage on the color of smoked pork loin. Two pig breeds (Polish Landrace and the crossbreed Polish Landrace x Duroc), three types of bioactive components (organic selenium; 2% of canola oil and 1% of flaxseed oil; and 2% of flaxseed oil and 1% of canola oil), and a control treatment were evaluated. Computer image analysis included the color assessment of muscle, fat, connective tissues, and smoked loin surface. For Polish Landrace, selenium supplementation caused higher values of red, green, and blue color components of the muscle tissue, which were lower for the crossbreed. However, there was no difference in the color components of loin fat tissue of the Polish Landrace breed due to selenium supplementation. In the case of oil supplementation, values of the color components of the muscle tissue for the Polish Landrace x Duroc crossbreed were also lower. The color components of muscle, fat, connective tissues, and smoked loin surface depend on the pig breed and on the bioactive compounds added to the forage.
Resumo:
ABSTRACT Healthy eating is associated with the consumption of fruits, which are notable for their beneficial effects on human health. The aim of this study was to evaluate the proximate composition, composition of fibers and components with antioxidant activity in soursops varieties Crioula, Lisa and Morada of physiological maturity (PM) and mature (M). The protein, lipid and moisture contents did not differ between soursop varieties, but the ash contents were higher in the Morada-PM (0.56%±0.03) and the Morada-M (0.82%±0.10) varieties. The Crioula-M variety showed higher levels of total dietary fibre (5.76%±0.12). The Lisa-M variety showed higher levels of insoluble dietary fibre (4.46%±0.00). The Lisa-M variety also showed a higher level of phenolic compounds (284.25 mg gallic acid/100 g of soursop pulp), differing significantly (p <0.05) from the Crioula-PM soursop (154.40 mg of gallic acid/100 g of soursop pulp). Under the DPPH• system, the soursops that showed highest antioxidant activity were the Crioula-M (EC50 of 156.40 g.g DPPH-1) and the Crioula-PM (EC50 of 162.41 g.g DPPH-1), which differed significantly from the Morada soursops. The results suggest that the consumption of soursops is useful for increasing concentrations of bioactive compounds and dietary fibre.