95 resultados para Airborne contaminants
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.
Resumo:
The TiO2/UV photocatalytic reactor was investigated as an alternative system to inactivate airborne microorganisms. The experiments performed in the absence of the catalyst showed that direct photolysis was not efficient to destruct microorganisms, with only 30% of inactivation. Similar inactivation percentage was obtained using TiO2 in absence of UV radiation. The destruction of microorganisms present in a contaminated indoor atmosphere, using the combination of TiO2/UV was very efficient, reaching more than 98% of destruction.
Resumo:
Antimony preparations are the drugs of choice for the treatment of leishmaniasis over 90 years, a disease that currently affects 12 million people worldwide. Its introduction was based on 19th century concepts of therapeutic effects of metal salts as arsenicals and other metals, most of them abandoned due to toxic effects or better drugs. In the last three decades, there was a great improvement in the knowledge of cell biology and immunology of those infections, but chemotherapy has not been improved in the same strength. The structure and mechanism of action of the two pentavalent antimonial drugs of choice, meglumine antimoniate and sodium stibogluconate, are not well known and the contamination of those pharmaceutical by toxic contaminants have been verified.
Resumo:
The present study aimed at determining a regional geochemical reference for sediment samples from Lago Paranoá watershed through the formulation of geoaccumulation indexes. The need for obtaining information from areas representing low human impact was the basis of this work. Systematic evaluations of sediment from Lago Paranoá will bring valuable information regarding the potential risk that this layer represents for aquatic organisms. Thus, despite the recent water quality improvements achieved in this ecosystem, contaminants incorporated in the sediments may be remobilized for alterations in the adjacent environment. The adsorption capacity of chemical elements in sediment samples was controlled through the variation in the amounts of organic matter, the mineralogical composition and the granulometric variation. By creating the Sediment Enrichment Index (SEI) through the normalization of analytical data it was possible to establish the magnitude of this enrichment relatively to naturally occurring concentrations all over the region of interest. Normalized values with organic matter were especially useful for the evaluation of lothic systems.
Resumo:
Samples of copper compounds covering all of the XXth century and the end of the XIXth century were submitted to classical and instrumental quantitative analysis. The amount of impurities greatly decreased with time, reaching a constant level since the 1960's. The gravimetric method was suitable for the determination of copper although other procedures also gave good or reasonable results. However, for metal contaminants, atomic absorption spectrometry was the best choice because of its lower detection limits, being able to determine several elements in the oldest samples. Ion chromatography detected several anions in copper salts manufactured before the 1950's. An increasing quality of raw materials and a better sensitivity of analytical methods led to quality improvement of copper compounds with time.
Resumo:
The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather). Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AUREA tanning company in Erechim-RS (Brazil) showed that this material presents high adsorption capacities of the reactive textile dyes.
Resumo:
Immunoassay techniques provide simple, powerful and inexpensive methods for analysis of environmental contaminants. However, the acceptance of immunoassays is dependent on the clear demonstration of quality and validity compared to more traditional techniques. In this review, primarily, the understanding and the fundamentals of immunoassay methods are given in order to make good use of immunoassays, especially of EIA tests. Special attention is given to the concepts related to the enzyme-linked immunosorbent assay (ELISA) formats, such as inhibition concentration at 50% (IC50), detection limit (LOD), cross-reactivity (CR %). It is also explained why some immunoassays are quantitative methods whereas others can only be used as screening methods. A list of main commercial kits for detection of priority pollutants is given in order to help analysts. Others formats, such as flow-injection immunoassay analysis (FIIA), immunoassay chromatography and immunosensors are also cited.
Resumo:
In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.
Resumo:
The alteration in the quality of groundwater in the industrial zone of Brazil's southernmost state was assessed by a hydrogeochemical study. In 70-85% of the studied area, fluoride, nitrate and phosphate in groundwater surpass the maximum limits for human consumption according to Brazilian environmental legislation. The chemical spectrum of contaminants and their spatial distribution show that fertilizer production processes are responsible for groundwater pollution. The natural conditions of the region are not favorable for minimal protection against infiltration of pollutants into the aquifer.
Resumo:
This work reports the analysis of inorganic and organic contaminants in alcohol fuel samples using capillary electrophoresis. Chloride and sulfate were analyzed in nitrate/ monochloroacetic acid at 10 mmol L-1 concentration each under indirect UV detection (210 nm). The analysis of aldehydes is based on the 216 nm detection of 3-methyl-2-benzothiazoline hydrazone adducts. The running buffer consisted of 20 mmol L-1 tetraborate , 40 mmol L-1 sodium dodecyl sufate and 12 mmol L-1 beta-ciclodextrin. Both methodologies were applied to real samples indicating inorganic ion concentrations from 0.15 to 6.64 mg kg-1 and aldehydes from 32.0 to 91.3 mg L-1.
Resumo:
This is a review about the use of Blue rayon in the extraction and concentration of environmental contaminants in the aquatic environment. Blue rayon is an adsorbent composed of fibers covalently linked with copper phthalocyanine trisulphonate that has the ability to selectively adsorb polycyclic compounds. Blue rayon can be used in situ, in columns or in flasks. This method showed to be efficient in the extraction of important classes of environmental contaminants like the polycyclic aromatic hydrocarbons (PAHs), aromatic amines and phenylbenzotriazoles (PBTAs) and can be an important tool in monitoring studies for the evaluation of water quality.
Resumo:
Wastewater and soil treatment processes based on Fenton's reagent have gained great attention in recent years due to its high oxidation power. This review describes the fundaments of the Fenton and photo-Fenton processes and discusses the main aspects related to the degradation of organic contaminants in water such as the complexation of iron, the use of solar light as the source of irradiation and the most important reactor types used. An overview of the main applications of the process to a variety of industrial wastewater and soil remediations is presented.
Resumo:
Although the hypothesis that environmental chemicals may exhibit endocrine disrupting effects is not new, the issue has been a growing level of concern due to reports of increased incidences of endocrine-related disease in humans, including declining male fertility, and more significantly, to adverse physiological effects observed in wildlife where cause and effect relationships are more evident. The list of endocrine disrupting chemicals (EDCs) includes a range of anthropogenic compounds, phytoestrogens, naturally occurring sex steroids and synthetic estrogens. Within the aquatic environment, the presence of EDCs has concerned many scientists and water quality regulators. Discharge of effluents from treatment facilities is likely to be a significant source of input of contaminants to many systems, and the potential for concentration of hydrophilic compounds and transformation products within sludges has implications for their disposal. Then, understanding the processes and the fate of EDCs on the environment, as well as the mechanisms of endocrine disruption, may facilitate controlling or limiting exposure of both humans and the environment to these compounds.
Resumo:
In this work the adsorption features of hydrotalcites (Al, Mg- CO3) and the magnetic properties of iron oxides have been combined in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for anionic contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic hydrotalcites were characterized by XRD, magnetization measurements, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for anionic contaminants in water.
Resumo:
Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI)). This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI) demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI) and organic matter, respectively.