48 resultados para Action principle
Resumo:
Megazol (CL 64,855) a very effective drug in experimental infections by Trypanosoma cruzi, and also in in vitro assays with vertebrate forms of the parasite, had its parasite, had its activity upon macromolecule biosynthesis tested using tissue culture-derived amastigote forms. Megazol presented a drastic inhibition of [3H]-uridine incorporation, suggesting a selective activity upon protein synthesis. Comparing the three drugs, megazol was more potent than nifurtimox and benznidazole in inhibiting protein an DNA synthesis. Megazol showed a 91% of inhibition of [3H]-leucine incorporation whereas nifurtimox and benznidazole, 0% and 2%, respectively. These latter two drugs inhibited the incorporation of all the precursors tested at similar levels, but the concentration of benznidazole was always three times higher, suggesting different mechanisms of action or, more probably, a greater efficiency of the 5-nitrofuran derivate in relation to the 2-nitroimidazole. So, wes conclude that the mode of action of megazol is different from the ones of nifurtimox and benznidazole and that its primary effect is associated with an impairment of protein synthesis.
Resumo:
Aqueous solutions of the molluscicidal latex of Euphorbia splendens are irritant to the rabbit eye in concentrations higher than 0.35% and to the rabbit skin in concentrations higher than 0.5%. Although this irritant potential does not proclude its use as a molluscicide, special precautions are recommended for hanbdling and application of the product and the hazard of skin tumor-promoting potencial should be carefully investigated before its use for schistosomiasis vector control.
Resumo:
In this study the hepatic lipoprotein lipase (LPL), activity was evaluated in adult female mice acclimatized at 5-C and submitted to carbon tetrachloride (CCI) or ethionine, in order to determine the possible role of this enzuyme in the fatty liver. The results were compared with those obtained in mice kept at room temperature (27-C) that the same hepatoesteatosis inducing agent. In contrast to animals kept at room temperature, in cold aclimatized mice neither the enhancement of the LPL-liver activity by the action of CCI or ethionine occurred nor the development of fatty infiltration in the liver was observed. We conclude that the low temperature induced a protective effect against CCI or ethionine-induced fatty liver that was correlated with the no-increase of the hepatic LPL activity.
Resumo:
The selectivity of Bacillus thuringiensis toxins is determined both by the toxin structure and by factors inherent to the insect. These toxins contain distinct domains that appear to be functionally important in toxin binding to protein receptors in the midgut of susceptible insects, and the subsequent formation of a pore in the insect midgut epithelium. In this article features necessary for the insecticidal activity of these toxins are discussed. These include toxin structure, toxin processing in the insect midgut, the identification of toxin receptors in susceptible insects, and toxin pore formation in midgut cells. In addition a number of B. thuringiensis toxins act synergistically to exert their full insecticidal activity. This synergistic action is critical not only for expressing the insecticidal activity of these toxins, but could also play a role in delaying the onset of insect resistance.
Resumo:
Bacillus sphaericus produces at least two toxins which are highly toxic to mosquito larvae. The binary toxin, which is comprised of proteins of 51.4 and 41.9 kDa, is present in all highly insecticidal strains. The 100 kDa SSII-1 toxin is present in most highly insecticidal as well as the weakly insecticidal strains. The current status of studies on biochemistry and mode of action of these toxins is reviewed.
Resumo:
The three organometallic complexes [(Cis-PtII (DDH) (2,5-Dihidroxibenzensulfonic)2, RhI (CO)2 Cl(2-Aminobenzothiazole) and RhI (CO)2 Cl(5-Cl-2-Methilbenzothiazole)] used in this study had been previously found to have a high in vitro activity against promastigote and amastigote like forms of Leishmania donovani. Here, the cytotoxic effect of these new organometallic complexes on the J-774 macrophages were studied. Only the RhI(CO)2 Cl (2-Aminobenzothiazole) complex induced substantial toxicity in the cells. Also, we assayed the effect of this complex on the parasite's biosynthesis of macromolecules. The RhI(CO)2Cl (5-Cl-2-Methylbenzothiazole) complex inhibited DNA, RNA, and protein synthesis. On the other hand, the two other compounds tested did not inhibit the incorporation of radioactive precursors. Finally important ultrastructural alterations in the parasites treated with the two non-cytotoxic complexes were observed.
Resumo:
The undisputed, worldwide success of chemotherapy notwithstanding, schistosomiasis continues to defy control efforts in as much rapid reinfection demands repeated treatment, sometimes as often as once a year. There is thus a need for a complementary tool with effect for the longer term, notably a vaccine. International efforts in this direction have been ongoing for several decades but, until the recombinant DNA techniques were introduced, antigen production remained an unsurmountable bottleneck. Although animal experiments have been highly productive and are still much needed, they probably do not reflect the human situation adequately and real progress can not be expected until more is known about human immune responses to schistosome infection. It is well-known that irradiated cercariae consistently produce high levels of protection in experimental animals but, for various reasons, this proof of principle cannot be directly exploited. Research has instead been focussed on the identification and testing of specific schistosome antigens. This work has been quite successful and is already at the stage where clinical trials are called for. Preliminary results from coordinated in vitro laboratory and field epidemiological studies regarding the protective potential of several antigens support the initiation of such trials. A series of meetings, organized earlier this year in Cairo, Egypt, reviewed recent progress, selecteded suitable vaccine candidates and made firm recommendations for future action including pledging support for large-scale production according to good manufacturing practice (GMP) and Phase I trials. Scientists at the American Centers for Disease Control and Prevention (CDC) have drawn up a detailed research plan. The major financial support will come from USAID, Cairo, which has established a scientific advisory group of Egyptian scientists and representatives from current and previous international donors such as WHO, NIAID, the European Union and the Edna McConnell Clark Foundation.
Resumo:
In the animal model of leishmaniasis caused by Leishmania (Leishmania) amazonensis there is a complex mechanism of the host-parasite interaction. The present study was performed to interfere with the inflammatory reaction to the parasites, through immune modulation. Female C5BL/6 isogenic mice were used, some of which were inoculated on the right ear and others on the right footpad with 3.10(6) stationary phase promastigotes of the MHOM/BR/PH8 strain of L. (L.) amazonensis, and were allocated in three groups: the first received pentoxifylline 8mg/kg every 12 h, since the first day; the second one received the same dose since the 40th day of infection and a control group that did not receive any treatment. All the ears excised were analyzed to determine the variation in weight between both ears and for histopathological analyses. A quantification of the parasites was done using the limiting dilution assay. A significant reduction of the number of parasites, was observed among the animals treated which had an accordingly significant reduction on the weight of the ears. Pentoxifylline reduced the macrophages propensity to vacuolation and induced a more effective destruction of the parasites by these cells. Moreover, the group that began the treatment later did not show the same effectiveness.
Resumo:
Bacteria active against dipteran larvae (mosquitoes and black flies) include a wide variety of Bacillus thuringiensis and B. sphaericus strains, as well as isolates of Brevibacillus laterosporus and Clostridium bifermentans. All display different spectra and levels of activity correlated with the nature of the toxins, mainly produced during the sporulation process. This paper describes the structure and mode of action of the main mosquitocidal toxins, in relationship with their potential use in mosquito and/or black fly larvae control. Investigations with laboratory and field colonies of mosquitoes that have become highly resistant to the B. sphaericus Bin toxin have shown that several mechanisms of resistance are involved, some affecting the toxin/receptor binding step, others unknown.
Resumo:
In experimental murine infections with Trypanosoma rangeli it has been observed development immune response to Trypanosoma cruzi. The aim of the present work was to analyze the result of antigenic stimuli and the protective effect with T. rangeli in T. cruzi infections. Mice groups immunized with metacyclic trypomastigotes of T. rangeli (Choachí-2V strain), derived from haemolymph and salivary gland and reinfected with T. cruzi virulent populations (Tulahuen strain, SA strain and Dm28c clone) from infected in vitro cells, showed decrease severity of disease outcomes, low parasitemia levels and 100% survival of all mice immunized, in comparison with groups infected only with T. cruzi populations, which demonstrated tissue affection, high parasitemia levels and the death of all animals. The above mentioned data contribute to understand the biological behaviour of T. cruzi and T. rangeli and their interaction with vertebrate host.
Resumo:
The latex action of Euphorbia splendens var. hislopii (Christ's Crown) against snails Lymnaea columella, intermediate host of Fasciola hepatica, derived from irrigation ditches of the Station of Pisciculture at Universidade Federal Rural do Rio de Janeiro, was studied in the laboratory. Lab bioassays, using aqueous solutions of the latex, varying between 0.1 and 10 mg/l, have proven molluscicidal activity of the product collected on the same day the tests were performed, during the four seasons of the year, finding the following lethal concentrations (LC90): 1.51 mg/l in the spring; 0.55 mg/l in the summer; 0.74 mg/l in the fall and 0.93 mg/l in winter, after 24 h exposure of the snails, showing significant differences among the seasons of the year (ANOVA test, F = 11.01, G.L.= 3/33, p < 0.05), as well as among the concentrations (ANOVA test, F = 27.38, G.L.= 11/33, p < 0.05). In the summer, mortality reached 100% from concentration at 0.6 mg/l, the same during fall and in winter as of 1 mg/l, while in spring it only reached 100% mortality as of 2 mg/l. Mortality in the controls was low, reaching 5% in the summer and winter and 10% in the fall and spring. None of the samples died. During the assay, with an aqueous solution of the latex at a concentration of 5 mg/l, in order to check the time of duration of the product effect, in the laboratory, it was observed that the molluscicidal activity remained stable up to the 15th day after the beginning of the test with 100% mortality of L. columella, gradually losing its effect until the 23rd day, when we no longer observed animal mortality. In the control group, there was a random daily variation in mortality rate ranging 0-50% after 48 h of observation for 30 days.
Resumo:
The aim of this work was to study the larvicidal activity of Lippia sidoides essential oil against Aedes aegypti larvae. The essential oil and its hydrolate (saturated solution of essential oil in water) were obtained by vapor extraction and their chemical composition determined by GL-chromatography coupled to mass spectroscopy. Bioassays were run with the essential oil, pure and diluted hydrolate and with their main constituents thymol and carvacrol. The results obtained showed that L. sidoides essential oil and its hydrolate have larvicidal action against the mosquito A. aegypti, causing an almost instantaneous mortality. Thymol, an alkylated phenol derivative and one of the major components of L. sidoides essential oil, was identified as the active principle responsible for the larvicidal action, causing 100% larval mortality at the lowest tested concentration of 0.017% (w/v). These results suggest that the essential oil of L. sidoides is promising as larvicide against A. aegypti and could be useful in the search of newer, more selective, and biodegradable larvicidal natural compounds to be used in official combat programs and at home.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.